状态反馈镇定之非线性系统反馈线性化(文末赠送仿真文件)

目录

1.反馈镇定补充知识

1.1何谓反馈线性化?

1.2平衡点的镇定

1.3什么样的系统才可反馈线性化?

1.3.1 标准型

 1.3.2 控制器形

例子①

例子②

1.3.3 观测器形

2. 反馈线性化

2.1仿真实例1

2.2仿真实例2

2.2.1线性化状态反馈输入

2.2.2仿真分析


1.反馈镇定补充知识

1.1何谓反馈线性化?

对非线性系统施加状态反馈使所得到的闭环系统成为线性的,或若闭环系统仍为非线性,则仍可找到一局部坐标系(j,U)或即定义在U上的非异状态变换z=j(x)使非线性系统在新坐标下具有线性控制系统的形式。如果变换j是全局的、亦即U=Rn,则称为全局反馈线性化,否则只能称局部反馈线性化。

1.2平衡点的镇定

对于系统的任一平衡点Xss,都可以通过变量替换X-Xss转换成平衡点在原点的问题,所以对于李雅普诺夫稳定性问题或者反馈镇定问题都可以标准化为原点的镇定问题。即:

1.3什么样的系统才可反馈线性化?

有三种:存在相对阶的标准型控制器型观测器型

1.3.1 标准型

假定存在如下的状态空间系统

 存在变量替换z = T(x),将上述系统转化为标准型:

η'称为内部动态系统是不可观的,ξ'和y称为外部动态系统,当ξ = 0,则称f(η,0)为动态方程f(η,ξ)的的零动态;此外如果系统在所研究的区域存在渐进稳定的平衡点,则称系统在这个区域是最小相位的;如果上述的替换变量z = T(x)使的f(η=0,ξ=0)是系统的一个平衡点,则此时系统最小相位等价于零动态,所以判断系统是否为最小相位,可以通过给出零动态方程时系统是否存在渐进平衡点。

如下:

 1.3.2 控制器形

显然存在

使得上述系统转化为可控线性系统:

 所以任何能通过转化写成控制器形的系统都是可以反馈线性化的

例子①

 考虑有如下的系统:x' = f+g*u

我们首先要证明系统是对合的:

计算其lie括号运算:

 可见,其秩可以是2,所以上述系统是对合的。

现在寻找h(x)变量,则存在z = T(x)将上述系统替换为控制器形,T(x)为:

其中:col表column即列的意思;Lf表lie/李导数运算:Lfh(x) = f*h'。

h满足如下条件:

由于 

所以h(x)与x2是独立的,即h(x)中不含x2。

所以选择h(x) = x1,则Lfh(x) = asinx2,所以得到坐标变换z = T(x)=[x1;asinx2].

可见,线性化并不是唯一的

例子②

考虑如下的4维机械手臂模型:

其lie括号运算为:

 即

 可见是满秩的,所该机械手臂系统是对合的。

寻找转化为控制器形的h(x)变量,其满足以下条件:

这里和上面的例子一样,读者感兴趣自己推导,所以最终取h(x) = x1,所以坐标变化向量z = T(x)为:

1.3.3 观测器形

非线性系统是可观的,即转化成用矩阵A和C求解可观矩阵后再判断秩的问题。

2. 反馈线性化

对于非线性系统的镇定可以通过先将其线性化,再进行反馈设计将其镇定。假设有如下的一般形式非线性系统:

x = f(x,u)

其中,f(0,0) = 0。

线性化公式:

 假设系统是可镇定的,则可以按照线性系统状态反馈设计u = -k*x使得系统镇定在平衡点。 

2.1仿真实例1

假设有如下的倒立摆系统:

 通过上述得线性化公式在平衡点原点进行线性化,有:

显然系统是可控的,此时我们假设需要将角度停留在delta,所以前馈控制uss= sinθ/c,并取状态反馈控制uδ = -K*x = -k1*x1-k2*x2,其中k1 > -cosδ/c,k2 > -b/c(即保证A-B*K是Hurwitz矩阵),即总控制律u = uss+uδ。仿真结果如下:

可以看到x1能够在有限时间内停留在δ,并且x2能够趋于0,即系统能够通过反馈镇定在平衡点镇定。

注:由于线性系统的理论很成熟,所非线性系统处理可以这样通过线性化的方法近似处理,即在操作点将其线性化(可以理解成平衡点),然后再分析、研究得到线性模型。但是这样的线性化本质上是近似的,所以并不能充分反应非线性系统的全部动态特性。

2.2仿真实例2

以上述控制器型的例子①为例:

我们已经证明了替换变量为:

对其求导有:

可以看到z1' = z2。 

现在将其转化成控制器型,即:

这样便可以得到反馈控制:

将非线性系统线性化成:

​​​​​​​2.2.1线性化状态反馈输入

代入到:

则转化成控制器型:

与控制器标准形式相比,此系统:

​​​​​​​所以此时可以取反馈线性化控制输入:

代入线性化状态反馈控制输入,有:

 由于是状态反馈,所以其中v = -Kz = -K[z1;z2]。

即通过建模的时候可以通过控制器型系统仿真分析,之后再通过T^(-1)逆变换得到原系统的状态和输出。

2.2.2仿真分析

由于此系统在u = 0时,便在原点是渐进稳定的,所以这里为了检验系统的反馈线性化控制律是否设计合理,取初始状态z = [5;2]。

至于调节参数,我是随意调节的,读者感兴趣可以自己调试,模型放在文末和评论区!

链接:https://pan.baidu.com/s/1IYktMEmvfwrv672YtIKvYw 
提取码:1234

如果有帮助,麻烦帮忙点个赞是我最大的分享动力,非常感谢!

注:仅为便利自己学习,错误在所难免,如有侵权,请联系删除,有兴趣的学者可以参考学习交流,谢谢!

参考资料:

《Nonlinear control---Hassan K. Khalil》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr. 邹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值