hdu 5143 NPY and arithmetic progression(思路,枚举)

NPY and arithmetic progression

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 864    Accepted Submission(s): 281


Problem Description
NPY is learning arithmetic progression in his math class. In mathematics, an arithmetic progression (AP) is a sequence of numbers such that the difference between the consecutive terms is constant.(from wikipedia)
He thinks it's easy to understand,and he found a challenging problem from his talented math teacher:
You're given four integers, a1,a2,a3,a4, which are the numbers of 1,2,3,4 you have.Can you divide these numbers into some Arithmetic Progressions,whose lengths are equal to or greater than 3?(i.e.The number of AP can be one)
Attention: You must use every number exactly once.
Can you solve this problem?
 

Input
The first line contains a integer T — the number of test cases (1T100000).
The next T lines,each contains 4 integers a1,a2,a3,a4(0a1,a2,a3,a4109).
 

Output
For each test case,print "Yes"(without quotes) if the numbers can be divided properly,otherwise print "No"(without quotes).
 

Sample Input
3 1 2 2 1 1 0 0 0 3 0 0 0
 

Sample Output
Yes No Yes
Hint
In the first case,the numbers can be divided into {1,2,3} and {2,3,4}. In the second case,the numbers can't be divided properly. In the third case,the numbers can be divided into {1,1,1}.
题意:1,2,3,4的数量分别为a1,a2,a3,a4,问你能不能把所有的数字组成0~多个长度至少为3的等差数列

思路:可以发现,全部的可能等差序列只有

1,2,3

2,3,4

1,2,3,4

1,1,1....

2,2,2....

3,3,3....

那么,当(1,2,3)这个等差数列的数量大于等于3时,我们假设为k,可以转换为(k个1,k个2,k个3),(2,3,4),(1,2,3,4)同理

因此我们只需要枚举0~2的(1,2,3),(2,3,4),(1,2,3,4),然后判断原序列减去这27种情况里有没有满足条件的(为0或者>=3)即可

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int ok(int a[])
{
    if((a[0]==0||a[0]>=3)&&(a[1]==0||a[1]>=3)&&(a[2]==0||a[2]>=3)&&(a[3]==0||a[3]>=3))
        return 1;
    return 0;
}
int main()
{
    int a[10],b[10];
    int T;
    int a1,a2,a3,a4;
    scanf("%d",&T);
    while(T--)
    {
        for(int i=0; i<4; i++)
            scanf("%d",&a[i]);
        int flag=0;
        if(ok(a)) flag=1;
        else
        {
            for(int i=0; i<=2; i++)
                for(int j=0; j<=2; j++)
                    for(int k=0; k<=2; k++)
                    {
                        b[0]=a[0]-i-k;
                        b[1]=a[1]-i-j-k;
                        b[2]=a[2]-i-j-k;
                        b[3]=a[3]-j-k;
                        if(ok(b))
                            flag=1;
                    }
        }
        if(flag) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}




阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/acm_cxq/article/details/51902618
文章标签: ACM HDU
个人分类: 思路 枚举 暴力
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭