hdu 5178 pairs(二分,思路)

pairs

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2038    Accepted Submission(s): 733


Problem Description
John has  n  points on the X axis, and their coordinates are  (x[i],0),(i=0,1,2,,n1) . He wants to know how many pairs <a,b>  that  |x[b]x[a]|k.(a<b)
 

Input
The first line contains a single integer  T  (about 5), indicating the number of cases.
Each test case begins with two integers  n,k(1n100000,1k109) .
Next  n  lines contain an integer  x[i](109x[i]109) , means the X coordinates.
 

Output
For each case, output an integer means how many pairs <a,b>  that  |x[b]x[a]|k .
 

Sample Input
  
  
2 5 5 -100 0 100 101 102 5 300 -100 0 100 101 102
 

Sample Output
  
  
3 10
 

Source

题意:有n个数组成的序列,问有多少个点对满足 |x[b]x[a]|k.(a<b)

思路:这个a<b就是来迷惑你的,其实就是点对不能反着来就是了。  那么我们可以枚举前面一个点,然后根据

x[a]-k<=x[b]<=x[a]+k  从a的下一个编号开始找即可

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
using namespace std;
#define N 100050
int a[N];
int main()
{
    int T,n,k;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d",&n,&k);
        for(int i=1; i<=n; i++)
                scanf("%d",&a[i]);
        sort(a+1,a+1+n);
        long long ans=0;
        for(int i=1; i<=n; i++)
        {
            int l=lower_bound(a+i+1,a+1+n,a[i]-k)-a-1;
            int r=upper_bound(a+i+1,a+1+n,a[i]+k)-a-1;
            ans=ans+r-l;
        }
        printf("%lld\n",ans);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值