Euclidean Geometry

在某节无聊的课上,SK同学随意画了一个三角形然后用尺子量了一下,发现三边长分别为a,b,c,然后SK同学拿起圆规分别以三个顶点为圆心画了三个圆,为了使图形看上去更美观,这三个圆两两不相交也互不包含,这里认为圆的半径可以是0(称之为“点圆”),现在SK同学想知道怎么画圆才能使三个圆的面积之和最大。

Input

第一行是一个正整数T(\leq 100),表示测试数据的组数,

每组测试数据只有一行,包含三个不超过100的正整数a,b,c,表示三条边的长度,保证这三条边能构成一个三角形。

Output

对于每组测试数据,输出三个圆的面积之和的最大值,要求相对误差不超过10^{-6}

也就是说,令输出结果为 a,标准答案为 b,若满足 \frac{ \left | a-b \right | }{max(1,b)} \leq 10^{-6},则输出结果会被认为是正确答案。

Sample Input

2
1 1 1
3 6 5

Sample Output

3.141592653590
81.681408993335

Hint

\pi=acos(-1.0)=3.141592653589793238462643383...

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<math.h>
using namespace std;
int a[10];
const double pi=M_PI;
int main()
{
    //printf("%.10lf\n",pi);
    int T;
    scanf("%d",&T);
    while(T--)
    {
        double x;
        for(int i=0; i<3; i++)
            scanf("%d",&a[i]);
        sort(a,a+3);
        x=pi*a[1]*a[1]*1.0+pi*(a[2]-a[1])*1.0*(a[2]-a[1]);
        printf("%.12lf\n",x);
    }
}

相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页