一、卷积神经网络和传统多层神经网络区别
1.传统多层神经网络区别:没有理论指出多少层(层数没有作用)
2.卷积网络:更加有效的特征学习部分,加深网络得以有效
3.深度学习:卷积神经网络、循环神经网络,新的结构以及一些新的方法(比如新的激活函数Relu等)
卷积神经网络主要应用于图像识别,还可以图像目标检测,常用模型如下:
Yolo:GoogleNet+ bounding boxes
SSD:VGG + region proposals
二、卷积神经网络的原理
卷积网络的三个结构:
神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)以及激活层。每一层的作用
卷积层:通过在原始图像上平移来提取特征
激活层:增加非线性分割能力
池化层:通过特征后稀疏参数来减少学习的参数,降低网络的复杂度,(最大池化和平均池化)
如果是分类任务,还会加上一个全连接层(FC)也就是最后的输出层,进行损失计算分类,如果不是分类任务就不需要加。
三、卷积层:
特点:提取特征的功能更加强大
卷积层(Convolutional layer),卷积神经网络中每层卷积层由若干卷积单元(卷积核)组成。
蓝色窗口为一个卷积核
1,卷积核的四大要素:
卷积核(Filter)的四大要素
(1)卷积核个数
(2)卷积核大小(观察窗口的大小):一般采用11、33、55(这些大小是经过研究人员证明比较好的效果)会进行特征加权运算(权重和偏置)
(3)卷积核步长(根据步长移动把整张图片观察完整),通常步长采用一个像素(采用一个像素的原因防止步长过大会过滤一些特征,步长越大观察就越粗糙)
(4)卷积核零填充大小:零填充就是在图片像素外围填充一圈值为0的像素
1)为什么进行零填充?
(1)因为设定的卷积核根据步长移动可能会损失图片的像素信息(可能没观察到),所以外围添加一圈值为0的像素使得大于图像,这样就避