人工智能|机器学习——基于机器学习的舌苔检测

本文介绍了基于深度学习的舌苔检测项目,探讨了其研究背景、现状,以及课题任务内容,包括数据集扩充、EfficientNet网络的应用和体质辨识过程。文章还分析了项目的可行性,从技术、经济、文化和社会角度阐述了其重要性和应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码下载:

基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库

1 研究背景

1.1.研究背景与意义

目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔质等舌象特征,了解人体内的体质信息从而对症下药。

传统中医的舌诊主要依赖于医生的肉眼观察,仅仅通过这种人工诊断不但需要消耗大量人力,而且诊断的结果往往受医生经验和主观判断影响,甚至受到周围客观环境的影响(如:光照、温度等)[1],通过10位中医专家对两百多例患者进行舌象诊断,发现仅仅有9例相同,为了减少主观判断和客观环境的影响,利用现代计算机技术结合传统中医的理论和中医专家的经验,使中医的舌诊客观化、数字化成为了目前十分热门研究方向。

利用机器学习实现对舌苔精确快捷的检测,结合中医经验智能化的给出体质信息判别不仅是对计算机技术应用领域的一大拓展,也对传统中医的传承、推广、创新和现代化具有重大意义。利用现代计算机技术使传统中医的应用更加广泛,诊断更加方便快捷,能一定程度上缓解医师人力不足的问题,减少医疗成本,辅助医师提高诊断的准确性,乃至推动中医走向全世界。

1.2.舌苔检测研究现状

目前中医通过舌诊辨识人体体质信息,主要依据中医千年发展累积的经验,使得舌象诊断需要十分丰富的专业知识才能准确无误,如何利用计算机技术实现这一复杂的诊断也是目前研究中的重点和难点。目前利用计算机技术实现的智能化舌诊项目虽然辨识较为精准,但是往往需要在特定的环境或者需要十分专业的设备进行辨识分析,使用专业的设备和环境使得检测门槛较高,检测的成本也随之提升,对舌诊的推广有一定的影响。

1.3.课题任务内容

本课题是基于机器学习的舌苔检测,目的是利用机器学习的方法实现对舌苔进行检测,对舌象信息进行识别,最后再结合传统中医的理论辨识出人体体质信息。

具体实现内容如下:

(1)因为 所使用的舌象数据集图片较少,在开始训练数据集前先使用图像增强和生成对抗网络扩充数据集。将数据集图片进行翻转、平移、加盐、亮度调整、模糊处理等,能将数据集扩充数十倍,以满足数据量的需求。除此之外还使用了生成对抗网络生成新的舌象图片扩充数据集使数据集多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博士僧小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值