目 录 引言 1 课题背景 1.1 研究背景及意义 1.2 舌苔检测研究现状 1.3 课题任务内容 1.4 本章小结 2 机器学习相关理论 2.1 机器学习的现状与发展 2.2 深度神经网络的结构和概念 2.2.1 神经网络模型 2.2.2 卷积神经网络 2.3 神经网络的训练 2.4 本章小结 3 舌苔检测需求分析 3.1 可行性分析 3.1.1 技术可行性 3.1.2 经济可行性 3.1.3 文化可行性 3.1.4 社会可行性 3.2 功能性需求 3.2.1 数据集构建 3.2.2 舌苔检测 3.2.3 体质辨识 3.3 非功能性需求 3.4 本章小结 4 舌象数据集构建与扩充 4.1 舌象图片数据的标注分类 4.2 使用图像增强扩充数据集 4.3 生成对抗网络 4.3.1 生成对抗网络相关概念 4.3.2 DCGAN生成舌象图片 4.4 本章小结 5 舌苔检测网络设计与实现 5.1 网络模型介绍 5.2 网络模型分析 5.2.1 网络主要结构 5.2.2 网络功能模块 5.3 网络模型搭建及功能的实现 5.3.1 网络模型模块 5.3.2 数据模块 5.3.3 训练模块 5.3.4 检测模块 5.3.5 体质辨识界面模块 5.4 本章小结 6 舌苔检测实验分析 6.1 实验数据集 6.2 数据图像预处理 6.2.1 图像增强 6.2.2 图像大小处理 6.2.3 图像归一化 6.3 实验参数 6.3.1 学习率 6.3.2 训练迭代次数 6.3.3 训练批大小 6.4 实验评估指标 6.4.1 损失函数 6.4.2 准确率 6.5 对比实验 6.5.1 预训练参数对比实验 6.5.2 图像预处理对比实验 6.5.3 学习率对比实验 6.6 舌苔检测训练数据 6.7 体质辨识功能展示 6.8 本章小结 7 结论 7.1 全文总结 7.2 不足之处 谢 辞 参考文献 结果 项目代码请联系。