科研学习|研究方法——小波相干分析在时间序列分析中的应用

本文介绍了小波相干分析在非平稳时间序列中的作用,通过实例展示了如何定位时域振荡并确定相位滞后。在信号处理和气候数据分析中,小波相干谱有助于揭示两个时间序列间的相干振荡和相对滞后。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、小波相干分析简介

在某些情况下,两个时间序列中的共同行为是由一个时间序列驱动或影响另一个时间序列引起的,对于联合平稳时间序列,用于表征时间或频率相关行为的方法通常是互相关、(傅立叶)互谱和相干性。然而,时间序列通常是非平稳的,即它们的频率内容会随着时间而变化,对于这些时间序列,重要的是时频平面中的相关性或相干性。因此可以使用小波相干性来检测非平稳信号中常见的时间局部振荡,且在将一个时间序列视为影响另一个时间序列的情况下,可以使用小波交叉谱的相位来识别两个时间序列之间的相对滞后。

二、定位时域振荡并确定相位滞后

对于第一个例子,采用由10Hz和75Hz的时域振荡组成的两个信号,信号持续时间为 6 秒,采样频率为1000 Hz。两个信号中10Hz的振荡在1.2~3秒之间重叠, 75Hz的振荡在 0.4 到 4.4 秒之间重叠,10Hz和75Hz的分量之间存在π/2相位滞后,两个信号都加入了高斯白噪声。

subplot(2,1,1)
plot(t,x1)
title('X Signal')
grid on
ylabel('Amplitude')
subplot(2,1,2)
plot(t,y1)
title('Y Signal')
ylabel('Amplitude')
grid on
xlabel('Seconds')

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博士僧小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值