在机器翻译任务中,BLEU 和 ROUGE 是两个常用的评价指标,BLEU 根据精确率(Precision)衡量翻译的质量,而 ROUGE 根据召回率(Recall)衡量翻译的质量
- BLEU(Bilingual Evaluation Understudy): BLEU是一种用于评估机器翻译结果质量的指标。它主要侧重于衡量机器翻译输出与参考翻译之间的相似程度,着重于句子的准确性和精确匹配。BLEU通过计算N-gram(连续N个词)的匹配程度,来评估机器翻译的精确率(Precision)。
- ROUGE(Recall-Oriented Understudy for Gisting Evaluation): ROUGE是一种用于评估文本摘要(或其他自然语言处理任务)质量的指标。与BLEU不同,ROUGE主要关注机器生成的摘要中是否捕捉到了参考摘要的信息,着重于涵盖参考摘要的内容和信息的完整性。ROUGE通过计算N-gram的共现情况,来评估机器生成的摘要的召回率(Recall)。
- 简而言之,BLEU侧重于衡量翻译的准确性和精确匹配程度,更偏向于Precision,而ROUGE侧重于衡量摘要的信息完整性和涵盖程度,更偏向于Recall。这两个指标在不同的任务和应用场景中都有其重要性,因此在评估自然语言处理模型时,经常会同时使用它们来综合考虑模型的表现。