LLM
五阿哥爱跳舞
零散知识记录,分享投稿全流程经验
展开
-
LLM Inference Scaling Law
paper address:https://arxiv.org/abs/2408.00724原创 2024-10-17 14:36:36 · 135 阅读 · 0 评论 -
openai_api和doc文档的实验笔记和内容解读
错误原因:openai.ChatCompletion.create(proj:MAD)api调用的问题,以及一些旧版的api的内容,可以在api 应用程序接口 中找到。大多数的内容都可以从官方文档的搜索当中找到。最新的调用代码应该参考官网为。原创 2024-10-17 00:04:57 · 618 阅读 · 0 评论 -
介绍GPT-o1:一系列解决困难问题( science, coding, and math )的推理模型
这里有一个问题,就是,所招募的专家测试结果是找的各个专业的phd做完整的测试,然后取精确率的平均值作为对比数值,还是请他们分别做自己所属专业的部分试题,然后将结果汇总作为专家结果。我们认为,使用思维链可以在安全性和一致性方面取得重大进展,因为(1)它使我们能够以清晰的方式观察模型思维,(2)关于安全规则的模型推理对分布外的场景更稳健。然而,为了实现这一点,模型必须能够以不变的形式自由表达其思想,因此我们无法将任何政策合规性或用户偏好训练到思想链上。例如,在未来,我们可能希望监控思维链,寻找操纵用户的迹象。原创 2024-09-23 11:29:26 · 1048 阅读 · 0 评论 -
PaddleNLP 3.0 支持大语言模型开发
huggingface不支持模型并行。张量并行,不满足大规模预训练的需求。1、组网部分 2、数据流 3、训练器 4、异步高效的模型存储。原创 2024-08-22 21:23:59 · 559 阅读 · 0 评论 -
LLM驱动的产品开发(AI大模型创意训练营)
机遇机遇1:LLM通用数据分析能力,降低函数/借口的开发门槛机遇2:LLM的强大知识问答能力,打破开发者的专业壁垒机遇3:LLM的格式化内容生成能力,提升数据的供给效率机遇4:LLM的函数编排能力,重塑产品的自动化程度机遇5:LLM对数据飞轮的天然要求,增强产品的价值说服力原创 2024-07-15 17:04:33 · 241 阅读 · 0 评论 -
小红书2024LLM论文分享
什么样子的模型是强模型?是一个直观比较的结果:Acc在这个任务上越好,则认为它越强。随着各大机构的模型越来越强,评估任务越来越复杂,如何在未来更加复杂的任务下评估LLM的能力。原创 2024-06-27 20:35:06 · 339 阅读 · 0 评论 -
大模型应用开发实践:RAG与Agent
planning是任务拆解的一些方法。原创 2024-06-20 21:34:01 · 327 阅读 · 0 评论 -
2024北京智源大会——以大模型为核心主题
2023是LLM的元年,2024看起来是LLM的全行业泛化阶段。原创 2024-06-14 10:19:57 · 258 阅读 · 0 评论 -
AI音乐生成流程
suno.com。原创 2024-06-04 21:43:13 · 460 阅读 · 0 评论 -
生成式AI导论2024-李宏毅
当你用类神经网络(模型)来表达这上万个参数的时候,你做的事情就是深度学习。生成式人工智慧是什么?生成式AI的入门课程。原创 2024-05-26 21:02:00 · 706 阅读 · 0 评论 -
讲座分享standford cs25 v4:shaping the future of AI from the history of Transformer
原创 2024-05-20 21:41:09 · 154 阅读 · 0 评论 -
Spacy的安装与使用教程
需要根据自己系统的cuda版本选择。原创 2024-05-15 22:57:24 · 987 阅读 · 0 评论 -
guidance快速配置流程-for LLM inference
4.38会报错安装即可sentencepieceprotobuf。原创 2024-03-05 16:52:56 · 577 阅读 · 0 评论 -
LLaVA和LLaVA-Plus视觉指令微调及工具使用构建多模态智能体
LLaVA-Plus 维护着一个技能库,其中包含各种视觉和视觉语言预训练模型(工具),并且能够根据用户的多模式输入激活相关工具,以即时组合执行结果来完成许多现实任务。我们通过实验验证了LLaVA-Plus的有效性,在多个基准测试中取得了持续改进的结果,特别是在VisIT-Bench上达到了的新SoTA。智源社区邀请到了LLaVA的一作柳昊天以及LLaVA-Plus的一作刘世隆,共同分享《LLaVA和LLaVA-Plus视觉指令微调及工具使用构建多模态智能体》欢迎大家观看。原创 2023-12-20 16:43:56 · 1815 阅读 · 0 评论 -
WarAgent使用多智能体理解人类历史和预防未来国际冲突
最近在这个领域中,还有一些相关的研究,包括使用机器学习来预测战争爆发的研究,例如“Predicting War: A Machine Learning Approach to Understanding Conflict”(2017)和“Forecasting International Conflict Using Ensemble Models and Hybrid Features”(2019)。本文试图通过使用人工智能和大型语言模型,回答人类历史上的战争问题:我们能否在历史的十字路口避免战争?原创 2023-12-19 13:38:01 · 653 阅读 · 0 评论 -
让大语言模型自主复述,打破与人类对话的壁垒 Rephrase and Respond: Let Large Language Models Ask Better Questions for Thems
对于较小的模型,在复述问题时,会产生扰动,与人的意图差距大。vicuna-13b-v1.5:基于llama2的模型。为了更充分利用大模型的复述能力。让LLM自己提出更适合自己理解的问题。用更好的LLM复述,让更小的模型回答。发现了,GPT自我改进模型的潜力。复述后的问题是可迁移的。原创 2023-11-22 15:07:39 · 199 阅读 · 0 评论 -
文心一言-情感关怀之旅
如何让LLM更有温度。原创 2023-11-18 12:49:14 · 517 阅读 · 0 评论 -
LangGPT作者教你编写高质量提示词
还有一点需要说明的是,我们在写自己的prompt的时候,不应该盲目地追求和堆砌提示词技巧,掌握一个满足需求的核心即可。实际应用的场景下,比较消耗人的token。结构话提示词的本质是,方法论的封装。解决了提示词的标准化的问题。3、最开始用框架、用模版,然后从中汲取方法论,写自己的方法论,生成简短表达。实际上,不需要掌握太多框架,掌握一个,形成自己的prompt思路即可。注意,对于弱模型中,结构话提示词可能无效,需要简化结构化prompt。输入想要的prompt的内容,自动生成结构化的提示词。原创 2023-11-17 21:12:36 · 813 阅读 · 0 评论