引言
在现代AI开发中,工具调用(Tool Calling)和函数调用(Function Calling)已成为增强语言模型响应能力的重要技术。这篇文章将介绍工具调用的概念,如何实现它,以及在不同模型中如何有效地使用这一功能。
主要内容
什么是工具调用?
工具调用是一种方法,使得模型可以根据给定的模式生成输出。这种机制不仅仅是执行某个操作,而是模型为工具生成参数,是否实际执行该工具由用户决定。这在结构化输出的生成和复杂任务处理上尤为有用。
工具调用的实现
许多语言模型提供商,如OpenAI、Anthropic、Google等,都支持工具调用功能。这些功能允许将可用工具及其模式传递给模型,并在响应中包含对这些工具的调用。
工具的定义
使用LangChain库,我们可以通过@tool
装饰器定义工具:
from langchain_core.tools import tool
@tool
def add(a: int, b: int) -> int:
"""Adds a and b."""
return a + b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies a and b."""
return a * b
tools = [add, multiply]
或者使用Pydantic定义模式:
from langchain_core.pydantic_v1 import BaseModel, Field
class Add(BaseModel):
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
class Multiply(BaseModel):
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
tools = [Add, Multiply]
工具绑定和调用示例
通过不同的提供商绑定工具:
from langchain_openai import ChatOpenAI
# 使用API代理服务提高访问稳定性
llm = ChatOpenAI(model="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools)
query = "What is 3 * 12? Also, what is 11 + 49?"
llm_with_tools.invoke(query).tool_calls
代码示例
以下是一个完整的代码示例,展示如何使用工具调用处理数学运算:
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
@tool
def add(a: int, b: int) -> int:
return a + b
@tool
def multiply(a: int, b: int) -> int:
return a * b
tools = [add, multiply]
llm = ChatOpenAI(model="gpt-4o-mini") # 使用API代理服务提高访问稳定性
llm_with_tools = llm.bind_tools(tools)
query = "Calculate 5 * 9 and 7 + 10."
response = llm_with_tools.invoke(query).tool_calls
print(response)
常见问题和解决方案
- 工具调用失败或输出格式不正确:检查工具模式是否正确定义,确保参数符合JSON格式。
- 网络访问问题:考虑使用API代理服务,以提高访问的稳定性。
总结和进一步学习资源
工具调用是提升模型综合能力的强大工具。通过定义和绑定自定义工具,开发者可以构建更复杂的AI应用。建议阅读以下资源以深入学习:
参考资料
- LangChain Core Documentation
- OpenAI API Documentation
- Pydantic User Guide
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—