探索工具调用:提升模型响应能力的关键

引言

在现代AI开发中,工具调用(Tool Calling)和函数调用(Function Calling)已成为增强语言模型响应能力的重要技术。这篇文章将介绍工具调用的概念,如何实现它,以及在不同模型中如何有效地使用这一功能。

主要内容

什么是工具调用?

工具调用是一种方法,使得模型可以根据给定的模式生成输出。这种机制不仅仅是执行某个操作,而是模型为工具生成参数,是否实际执行该工具由用户决定。这在结构化输出的生成和复杂任务处理上尤为有用。

工具调用的实现

许多语言模型提供商,如OpenAI、Anthropic、Google等,都支持工具调用功能。这些功能允许将可用工具及其模式传递给模型,并在响应中包含对这些工具的调用。

工具的定义

使用LangChain库,我们可以通过@tool装饰器定义工具:

from langchain_core.tools import tool

@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]

或者使用Pydantic定义模式:

from langchain_core.pydantic_v1 import BaseModel, Field

class Add(BaseModel):
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

class Multiply(BaseModel):
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

tools = [Add, Multiply]

工具绑定和调用示例

通过不同的提供商绑定工具:

from langchain_openai import ChatOpenAI

# 使用API代理服务提高访问稳定性
llm = ChatOpenAI(model="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools)

query = "What is 3 * 12? Also, what is 11 + 49?"
llm_with_tools.invoke(query).tool_calls

代码示例

以下是一个完整的代码示例,展示如何使用工具调用处理数学运算:

from langchain_openai import ChatOpenAI
from langchain_core.tools import tool

@tool
def add(a: int, b: int) -> int:
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    return a * b

tools = [add, multiply]

llm = ChatOpenAI(model="gpt-4o-mini")  # 使用API代理服务提高访问稳定性
llm_with_tools = llm.bind_tools(tools)

query = "Calculate 5 * 9 and 7 + 10."
response = llm_with_tools.invoke(query).tool_calls

print(response)

常见问题和解决方案

  • 工具调用失败或输出格式不正确:检查工具模式是否正确定义,确保参数符合JSON格式。
  • 网络访问问题:考虑使用API代理服务,以提高访问的稳定性。

总结和进一步学习资源

工具调用是提升模型综合能力的强大工具。通过定义和绑定自定义工具,开发者可以构建更复杂的AI应用。建议阅读以下资源以深入学习:

参考资料

  1. LangChain Core Documentation
  2. OpenAI API Documentation
  3. Pydantic User Guide

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值