数据分析-可视化挖掘读书笔记

可视化分析常解的业务问题

书中将可视化分析应用的领域做了一个比较简洁的归类,非常适合大家参考,书中提到的目标市场、交叉营销、客户画像、识别客户需求、竞争分析、欺诈识别、流失分析在电商平台都有涉及



可视化分析常用的方法

书中将可视化常用的分析方法做了归类,多维对比可视化、空间可视化、可视化分类挖掘、可视化估值、可视化聚类、可视化关联分,并且注明了在常用业务问题中可能会使用的可视化分析方法



可视化分析的流程

书中将可视化分析过程划分了四个大的阶段,计划阶段、数据准备阶段、数据分析阶段和实施阶段,下面举个例子详细说明我比较关注的二个子阶段:识别关键业务问题,和分析可视化和挖掘模型

客户流失项目-识别关键的业务问题

首先业务人员和数据分析人员一起定义业务规则,什么是"流失客户"?,比如对快消品可以定义六个月内没有重复购买就算流失客户,然后要和业务人员了解客户流失的一些相关因素


然后我们定义项目的目标,比如:客户流失率下降5%,同时ROI大于1.5,对于小电商主要考虑的拉新,对于大中电商流失是主要考虑的因素,对于大电商减少5%的流失率就是很大的年销售额了


客户流失项目-分析可视化和挖掘模型

首先分析转向竞争者服务的客户特征,我们可以通过多维分析观察数据,通过关联分析寻找和流失相关的因素,我们可以通过聚类将流失客户划分为相似的分组,对每个分组归类特征


其次分析当前有类似特征的客户,我们可以设计分类模型,将客户划分为”流失“和”不流失“二类


最后分析潜在流失客户,我们可以设计估值模型估算潜在流失客户可能流失的时间段,针对处于不同流失阶段的客户采用合适的市场营销行动保留这些客户


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/afujin/article/details/50677084
个人分类: 数据分析
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭