3.3.7 The Black-Scholes-Merton Model

7. The Black-Scholes-Merton Model

7.1 Assumption

7.1.1 Stock Price Movements

The stock prices are often modeled by geometric Brownian motion (GBM).

The stock price S T S_T ST, is log-normally distributed. A variable that is log-normally distributed has a minimum of zero and conforms to prices better than the normal distribution which would produce negative prices.

If the stock price is log-normally distributed, the continuously compounded annual return of the stock is normally distributed.

7.1.2 Historical Volatility

Square root rule: the volatility for short periods of time can be scaled to longer periods in time by the square root rule.
σ J − p e r i o d s = σ 1 − p e r i o d × J 0.5 \sigma_{J-periods}=\sigma_{1-period}\times J^{0.5} σJperiods=σ1period×J0.5

J J J number of the trading periods in a year.

7.1.3 Assumption

The option should be European-style.

There are no dividends during the life of the option.

The underlying stock price follows lognormal distribution and the rate of return of the stock follows normal distribution.

The continuously compounded risk-free rate is constant and known.

The volatility of the stock return is constant and known.

The market is frictionless.

  • The short selling is permitted and continuous trading is available. The underlying asset is divisible.
  • There are no transaction costs, no taxes and no regulatory constraints.
  • There is no-arbitrage opportunities in the market.

7.2 Pricing European Option

7.2.1 European Option on A Non-dividend Stock

Call = S 0 N ( d 1 ) − X e − r T N ( d 2 ) \text{Call}=S_0N(d_1)-Xe^{-rT}N(d_2) Call=S0N(d1)XerTN(d2)
Put = − S 0 N ( − d 1 ) + X e − r T N ( − d 2 ) \text{Put}=-S_0N(-d_1)+Xe^{-rT}N(-d_2) Put=S0N(d1)+XerTN(d2)
d 1 = I n ( S 0 X ) + ( r f + σ 2 2 ) T σ T d_1=\frac{In(\frac{S_0}{X})+(r_f+\frac{\sigma^2}{2})T}{\sigma\sqrt{T}} d1=σT In(XS0)+(rf+2σ2)T
d 2 = I n ( S 0 X ) + ( r f − σ 2 2 ) T σ T d_2=\frac{In(\frac{S_0}{X})+(r_f-\frac{\sigma^2}{2})T}{\sigma\sqrt{T}} d2=σT In(XS0)+(rf2σ2)T
d 2 = d 1 − σ T d_2=d_1-\sigma\sqrt{T} d2=d1σT

  • N ( X ) N(X) N(X): Standard normal cumulative distribution function.
  • N ( d 1 ) N(d_1) N(d1): Delta of call option
  • N ( d 2 ) N(d_2) N(d2): Risk-neutral probability of call exercise.
7.2.2 European Option on A Dividend-paying Stock

Discrete dividends
Call = ( S 0 − PVD ) N ( d 1 ) − X e − r T N ( d 2 ) \text{Call}=(S_0-\text{PVD})N(d_1)-Xe^{-rT}N(d_2) Call=(S0PVD)N(d1)XerTN(d2)
Put = − ( S 0 − PVD ) N ( − d 1 ) + X e − r T N ( − d 2 ) \text{Put}=-(S_0-\text{PVD})N(-d_1)+Xe^{-rT}N(-d_2) Put=(S0PVD)N(d1)+XerTN(d2)

Continuously compound dividends:
Call = S 0 e − q T N ( d 1 ) − X e − r T N ( d 2 ) \text{Call}=S_0e^{-qT}N(d_1)-Xe^{-rT}N(d_2) Call=S0eqTN(d1)XerTN(d2)
Put = − S 0 e − q T N ( − d 1 ) + X e − r T N ( − d 2 ) \text{Put}=-S_0e^{-qT}N(-d_1)+Xe^{-rT}N(-d_2) Put=S0eqTN(d1)+XerTN(d2)

Effects on options: Dividend payment will increase put values and decrease call values.

7.2.3 Implied Volatility

Volatility is the only parameter which we cannot get directly in the market. Four inputs in fives for BSM model is observable ( S S S, X X X, T T T, R R R), and if the option market price is available, the volatility can be calculated with the BSM model. The volatility of underlying asset return “implied” in the option market price.

Volatility estimation using historical data is not always representative of current market (backward-looking) while implied volatility is forward-looking.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值