2. Calculating and Applying VaR
2.1 Linear and Non-linear Derivatives
Linear derivatives has a linear relationship between underlying risk factors and derivative instruments. The transmission parameter( δ \delta δ) needs to be constant(e.g. forward, futures).
Δ P Linear Derivative = δ × Δ S Risk Factor ; VaR Linear Derivative = δ × VaR Risk Factor \Delta P_{\text{Linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}};\;\text{VaR}_{\text{Linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}} ΔPLinear Derivative=δ×ΔSRisk Factor;VaRLinear Derivative=δ×VaRRisk Factor
Suppose you have a long forward position on an underlying stock maturing in 3 months. The daily 95 % VaR 95\%\;\text{VaR} 95%VaR of the stock is 2 million. What is the daily 95 % VaR 95\%\;\text{VaR} 95%VaR of the forward position?
δ Forward = 1 \delta_{\text{Forward}}=1 δForward=1
VaR Forward = 1 × VaR Underlying Stock = 2 million \text{VaR}_{\text{Forward}}=1\times \text{VaR}_{\text{Underlying Stock}}=2\;\text{million} VaRForward=1×VaRUnderlying Stock=2million
Nonlinear derivatives has a changing relationship between underlying risk factors and derivative instruments depending on the state of underlying asset. The transmission parameter( δ \delta δ) is inconstant(e.g. option, bond).
Δ P Non-linear Derivative = δ × Δ S Risk Factor ; VaR Non-linear Derivative = δ × VaR Risk Factor \Delta P_{\text{Non-linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}}; \;\text{VaR}_{\text{Non-linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}} ΔPNon-linear Derivative=δ×ΔSRisk Factor;VaRNon-linear Derivative=δ×VaRRisk Factor
2.2 Delta Normal Approach
2.2.1 Delta approximation
Delta normal approach(Delta approximation) is based on the risk factor’s deltas of a portfolio and assumes normal distributions for the risk factors.
Steps to calculate the VaR \text{VaR} VaR of standalone non-linear derivatives.
- Step 1: Calculate the VaR \text{VaR} VaR of the underlying risk factor.
- Step 2: Use delta with respect to the underlying to transmit the risk factor VaR \text{VaR} VaR to the nonlinear derivatives VaR \text{VaR} VaR.
VaR option = ∣ Δ ∣ × VaR stock \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}} VaRoption=∣Δ∣×VaRstock
VaR bond = ∣ − D × P ∣ × VaR yield \text{VaR}_{\text{bond}}=|-D \times P|\times \text{VaR}_{\text{yield}} VaRbond=∣−D×P∣×VaRyield
Louise wants to use delta normal approach to estimate the VaR \text{VaR} VaR of a call position. The call option is at-the-money and the underlying stock is trading at USD 23 23 23 with daily volatility 2.5 % 2.5\% 2.5%. Please calculate the daily dollar VaR \text{VaR} VaR of this call option at 99 % 99\% 99% confidence level.
VaR stock = ∣ 0 − 2.33 × 2.5 % ∣ × 23 = 1.3398 \text{VaR}_{\text{stock}}=|0-2.33\times2.5\%|\times 23= 1.3398 VaRstock=∣0−2.33×2.5%∣×23=1.3398
When a call call option is at the money , Δ \Delta Δ is 0.5
VaR option = ∣ Δ ∣ × VaR stock = 0.5 × 1.3398 = 0.6699 \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}=0.5 \times 1.3398=0.6699 VaRoption=∣Δ∣×VaRstock=0.5×1.3398=0.6699
Steps to calculate the VaR \text{VaR} VaR of a portfolio:
- Calculate individual risk factors’ mean and standard deviation and their correlation between each other.
- Calculate the means and volatility of the portfolio
- Calculate the portfolio’s VaR \text{VaR} VaR assuming normality of value change of the portfolio.
VaR ( X % ) = ∣ μ portfolio − Z X % × σ portfolio ∣ \text{VaR}(X\%)=|\mu_{\text{portfolio}}-Z_{X\%}\times\sigma_{\text{portfolio}}| VaR(X%)=∣μportfolio−ZX%×σportfolio∣
Many pension fund are using VaR \text{VaR} VaR to measure their portfolio risk. Tao, FRM, is a risk analyst of Pluto Pension Fund. In his routine work, he will send risk report of large portfolios to his manager on daily basis. Consider a portfolio consisting of $ 20 20 20 million invested in Stock A and $ 40 40 40 million invested in Stock B. Assuming that returns are normally distributed. Daily volatilities of A and B are 0.5 % 0.5\% 0.5% and 2 % 2\% 2% and daily returns are 0 % 0\% 0%. The correlation between two stocks is 0.25 0.25 0.25. What is the daily dollar VaR \text{VaR} VaR with 95 % 95\% 95% confidence level of the portfolio?
σ p 2 = w 1 2 σ 1 2 + w 2 2 σ 2 2 + 2 w 1 w 2 σ 1 σ 2 ρ 1 , 2 \sigma_p^2=w_1^2\sigma_1^2+w_2^2\sigma_2^2+2w_1w_2\sigma_1\sigma_2 \rho_{1,2} σp2=w12σ12+w22σ22+2w1w2σ1σ2ρ1,2
σ p 2 = 2 0 2 × 0.5 % 2 + 4 0 2 × 2 % 2 + 2 × 20 × 40 × 0.5 % × 2 % × 0.25 → σ p = 0.83 million \sigma_p^2=20^2\times0.5\%^2+40^2\times2\%^2+2\times20\times40\times0.5\%\times2\%\times0.25\to\sigma_p=0.83\;\text{million} σp2=202×0.5%2+402×2%2+2×20×40×0.5%×2%×0.25→σp=0.83million
VaR ( X % ) = ∣ μ portfolio − Z X % × σ portfolio ∣ = 1.65 × 0.83 = 1.37 million \text{VaR}(X\%)=|\mu_{\text{portfolio}}-Z_{X\%}\times\sigma_{\text{portfolio}}|=1.65\times0.83=1.37\;\text{million} VaR(X%)=∣μportfolio−ZX%×σportfolio∣=1.65×0.83=1.37million
2.2.2 Delta-gamma approximation
Taylor Series approximation(Delta-gamma approximation): the change in the derivative value is approximated by slope and curvature. The first derivative is delta linear approximation and second derivative is the gamma correction.
Delta-gamma approximation cannot provide accurate approximation for portfolio with non-linear derivatives such as MBS, barrier options, as the normal distribution assumption for the change of risk factors does not translate into the normal distribution assumption for the change of portfolio value.
Although adding gamma can work much better and the result is a quadratic model. But there are no easy-to-use analytic results for quadratic model.
VaR bond = ∣ − D × P ∣ × VaR yield − 1 2 × C × P × VaR yield 2 \text{VaR}_{\text{bond}}=|-D\times P|\times \text{VaR}_{\text{yield}}-\frac{1}{2}\times C\times P\times \text{VaR}_{\text{yield}}^2 VaRbond=∣−D×P∣×VaRyield−21×C×P×VaRyield2
VaR option = ∣ Δ ∣ × VaR stock − 1 2 × Γ × VaR stock 2 \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}-\frac{1}{2}\times\Gamma\times \text{VaR}_{\text{stock}}^2 VaRoption=∣Δ∣×VaRstock−21×Γ×VaRstock2
注意是减去 gamma correction
Stephen Ross, a trader of Neptune Security, has a call option position on CAC-40 index. The index is 5345 5345 5345 currently. Stephen uses BSM model to analyze the option, which has N ( d 1 ) = 0.67 N(d1)=0.67 N(d1)=0.67, N ( d 2 ) = 0.576 N(d2)=0.576 N(d2)=0.576. In this call option contract, every point of index values € 5 €5 €5. The daily volatility of the underlying index is 0.45 % 0.45\% 0.45%. What should be the 95 % 95\% 95% daily dollar VaR \text{VaR} VaR of this call option under delta-normal approach?
VaR stock = 1.65 × 0.45 % × 5345 × 5 = 198.433 \text{VaR}_{\text{stock}}=1.65\times0.45\%\times5345\times5=198.433 VaRstock=1.65×0.45%×5345×5=198.433
Δ = N ( d 1 ) = 0.67 \Delta=N(d1)=0.67 Δ=N(d1)=0.67
VaR option = ∣ Δ ∣ × VaR stock = 0.67 × 198.433 = 132.95 \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}=0.67\times198.433=132.95 VaRoption=∣Δ∣×VaRstock=0.67×198.433=132.95
2.3 Historical Simulation
Historical simulation is a non-parametric method, where the future behavior of the underlying market variable is determined in a very direct way from their past behavior. These scenarios can be evaluated using full revaluation.
Steps of historical simulation:
(1) Identify risk factors (equity price, interest rate etc.) on which the value of the portfolio under consideration depends.
- Percentage change(equity price, foreign exchange)
- Actual change(interest rate, credit spread)
(2) Collect daily data on the behavior of the risk factors over a period in the past.
Day | Stock Price (USD) | Int. Rate | … | Port.Val. (USD million) |
---|---|---|---|---|
0 | 50 50 50 | 2.52 % 2.52\% 2.52% | … | 72.1 72.1 72.1 |
1 | 52 52 52 | 2.54 % 2.54\% 2.54% | … | 72.5 72.5 72.5 |
2 | 46 46 46 | 2.55 % 2.55\% 2.55% | … | 70.4 70.4 70.4 |
… | … | … | … | … |
498 | 60 60 60 | 2.30 % 2.30\% 2.30% | … | … |
498 | 60 60 60 | 2.32 % 2.32\% 2.32% | … | 75.3 75.3 75.3 |
500 | 63 63 63 | 2.36 % 2.36\% 2.36% | … | 76.3 76.3 76.3 |
(3) Create scenario by assuming that the change in each risk factor over the next day corresponds to a change observed during one of the previous days.
Scenario | Stock Price (USD) | Int. Rate | … | Port.Val. (USD million) | Loss (USD million) |
---|---|---|---|---|---|
1 | 65.52 65.52 65.52 | 2.38 % 2.38\% 2.38% | … | 76.8 76.8 76.8 | − 0.5 -0.5 −0.5 |
2 | 55.73 55.73 55.73 | 2.37 % 2.37\% 2.37% | … | 71.7 71.7 71.7 | 4.6 4.6 4.6 |
… | … | … | … | … | … |
499 | 63.00 63.00 63.00 | 2.38 % 2.38\% 2.38% | … | 75.3 75.3 75.3 | 1 1 1 |
500 | 66.15 66.15 66.15 | 2.40 % 2.40\% 2.40% | … | 76.7 76.7 76.7 | − 0.4 -0.4 −0.4 |
(4) Sort the loss based on the scenarios and calculate VaR or ES for any given confidence level.
Scenario | 210 | 195 | 2 | 23 | 48 | 367 | 235 | … | … | … |
---|---|---|---|---|---|---|---|---|---|---|
Loss(USD millions) | 7.8 | 6.5 | 4.6 | 4.3 | 3.9 | 3.7 | 3.5 | … | … | … |
ES daily ( 1 % ) = ( 7.8 + 6.5 + 4.6 + 4.3 ) / 4 = 5.8 million \text{ES}_{\text{daily}}(1\%)=(7.8+6.5+4.6+4.3)/4=5.8\;\text{million} ESdaily(1%)=(7.8+6.5+4.6+4.3)/4=5.8million
VaR daily ( 1 % ) = 3.9 million \text{VaR}_{\text{daily}}(1\%)=3.9 \;\text{million} VaRdaily(1%)=3.9million
Advantages
- It is easy to implement and not exposed to model risk.
- Actual market prices are accumulated for full revaluation.
- All correlations risk factors are included in the prices.
Disadvantages:
- It gives equal weight to all the observations.
- Historical data may not be a good forecast for future.
- It cannot reflect the new volatility and correlation changing in the market condition instantly.
2.4 Monte Carlo Simulation
Monte Carlo simulations generate scenarios by taking random samples from the distributions assumed for the risk factors (rather than using historical data). Monte Carlo simulation is a full revaluation method.
Steps of Monte Carlo Simulation:
(1) Value the portfolio today using the current values of the risk factors.
(2)Sample once from the multivariate normal probability distribution for the change of risk factors. (e. G. Stock price interest rate change)
(3) Use the sampled values of the change of risk factor to determine the values of the risk factors at the end of the period under consideration (usually one day).
(4) Revalue the portfolio using these risk factor values. Subtract this portfolio value from the current value to determine the loss.
(5) Repeat steps 2 to 5 many times to determine a probability distribution for the loss.
Advantages:
- Can generate correlated scenarios and model the correlations among different risk factors based on a statistical distribution.
- Work for both linear and non-linear portfolio.
Disadvantages:
- There is model risk for the generation of statistical distribution on the risk factor.
- Computationally intensive and thus quite slow
- The correlation and standard deviation for the risk factor in the past may not be a good indicator of the future.
Summary
Category | Historical Simulation | Delta Normal Approach | Monte Carlo Simulation |
---|---|---|---|
Full Revaluation | Yes | No | Yes |
Model Risk Distribution assumption | No | Yes | Yes |
Computationally intensive | Yes | No | Yes |
2.5 Correlation Breakdown
During periods of heightened volatility, correlations can be very different from those under normal market conditions. Correlations usually increase under stressed market conditions. This is sometimes called a correlation breakdown.
When calculating VaR \text{VaR} VaR or E S ES ES, we are concerned estimating what would happen under extreme market conditions. Therefore, we should try and estimate the correlation in such case rather than in normal market conditions.
2.6 Worst case analysis
Worst case analysis: an analyst will calculate statistics for worst-case results.
Monte Carlo simulation can be used to calculate the expected worst-case result over 52 weeks, the 95th percentile of the worst-case result.
It should not be regarded as an alternative to VaR \text{VaR} VaR and E S ES ES.