4.2.2 Calculating and Applying VaR

本文介绍了金融风险度量中的关键概念,包括线性和非线性衍生品的VaR计算,Delta正常法及其在期权和债券中的应用。此外,还探讨了历史模拟方法在非参数风险评估中的使用,以及在极端市场条件下考虑相关性的变化。最后提到了最坏情况分析在风险管理中的角色。
摘要由CSDN通过智能技术生成

2. Calculating and Applying VaR

2.1 Linear and Non-linear Derivatives

Linear derivatives has a linear relationship between underlying risk factors and derivative instruments. The transmission parameter( δ \delta δ) needs to be constant(e.g. forward, futures).

Δ P Linear Derivative = δ × Δ S Risk Factor ;    VaR Linear Derivative = δ × VaR Risk Factor \Delta P_{\text{Linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}};\;\text{VaR}_{\text{Linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}} ΔPLinear Derivative=δ×ΔSRisk Factor;VaRLinear Derivative=δ×VaRRisk Factor

Suppose you have a long forward position on an underlying stock maturing in 3 months. The daily 95 %    VaR 95\%\;\text{VaR} 95%VaR of the stock is 2 million. What is the daily 95 %    VaR 95\%\;\text{VaR} 95%VaR of the forward position?

δ Forward = 1 \delta_{\text{Forward}}=1 δForward=1

VaR Forward = 1 × VaR Underlying Stock = 2    million \text{VaR}_{\text{Forward}}=1\times \text{VaR}_{\text{Underlying Stock}}=2\;\text{million} VaRForward=1×VaRUnderlying Stock=2million

Nonlinear derivatives has a changing relationship between underlying risk factors and derivative instruments depending on the state of underlying asset. The transmission parameter( δ \delta δ) is inconstant(e.g. option, bond).

Δ P Non-linear Derivative = δ × Δ S Risk Factor ;    VaR Non-linear Derivative = δ × VaR Risk Factor \Delta P_{\text{Non-linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}}; \;\text{VaR}_{\text{Non-linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}} ΔPNon-linear Derivative=δ×ΔSRisk Factor;VaRNon-linear Derivative=δ×VaRRisk Factor

2.2 Delta Normal Approach

2.2.1 Delta approximation

Delta normal approach(Delta approximation) is based on the risk factor’s deltas of a portfolio and assumes normal distributions for the risk factors.

Steps to calculate the VaR \text{VaR} VaR of standalone non-linear derivatives.

  • Step 1: Calculate the VaR \text{VaR} VaR of the underlying risk factor.
  • Step 2: Use delta with respect to the underlying to transmit the risk factor VaR \text{VaR} VaR to the nonlinear derivatives VaR \text{VaR} VaR.

VaR option = ∣ Δ ∣ × VaR stock \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}} VaRoption=∣Δ∣×VaRstock

VaR bond = ∣ − D × P ∣ × VaR yield \text{VaR}_{\text{bond}}=|-D \times P|\times \text{VaR}_{\text{yield}} VaRbond=D×P×VaRyield

Louise wants to use delta normal approach to estimate the VaR \text{VaR} VaR of a call position. The call option is at-the-money and the underlying stock is trading at USD 23 23 23 with daily volatility 2.5 % 2.5\% 2.5%. Please calculate the daily dollar VaR \text{VaR} VaR of this call option at 99 % 99\% 99% confidence level.

VaR stock = ∣ 0 − 2.33 × 2.5 % ∣ × 23 = 1.3398 \text{VaR}_{\text{stock}}=|0-2.33\times2.5\%|\times 23= 1.3398 VaRstock=∣02.33×2.5%∣×23=1.3398

When a call call option is at the money , Δ \Delta Δ is 0.5

VaR option = ∣ Δ ∣ × VaR stock = 0.5 × 1.3398 = 0.6699 \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}=0.5 \times 1.3398=0.6699 VaRoption=∣Δ∣×VaRstock=0.5×1.3398=0.6699

Steps to calculate the VaR \text{VaR} VaR of a portfolio:

  • Calculate individual risk factors’ mean and standard deviation and their correlation between each other.
  • Calculate the means and volatility of the portfolio
  • Calculate the portfolio’s VaR \text{VaR} VaR assuming normality of value change of the portfolio.

VaR ( X % ) = ∣ μ portfolio − Z X % × σ portfolio ∣ \text{VaR}(X\%)=|\mu_{\text{portfolio}}-Z_{X\%}\times\sigma_{\text{portfolio}}| VaR(X%)=μportfolioZX%×σportfolio

Many pension fund are using VaR \text{VaR} VaR to measure their portfolio risk. Tao, FRM, is a risk analyst of Pluto Pension Fund. In his routine work, he will send risk report of large portfolios to his manager on daily basis. Consider a portfolio consisting of $ 20 20 20 million invested in Stock A and $ 40 40 40 million invested in Stock B. Assuming that returns are normally distributed. Daily volatilities of A and B are 0.5 % 0.5\% 0.5% and 2 % 2\% 2% and daily returns are 0 % 0\% 0%. The correlation between two stocks is 0.25 0.25 0.25. What is the daily dollar VaR \text{VaR} VaR with 95 % 95\% 95% confidence level of the portfolio?

σ p 2 = w 1 2 σ 1 2 + w 2 2 σ 2 2 + 2 w 1 w 2 σ 1 σ 2 ρ 1 , 2 \sigma_p^2=w_1^2\sigma_1^2+w_2^2\sigma_2^2+2w_1w_2\sigma_1\sigma_2 \rho_{1,2} σp2=w12σ12+w22σ22+2w1w2σ1σ2ρ1,2

σ p 2 = 2 0 2 × 0.5 % 2 + 4 0 2 × 2 % 2 + 2 × 20 × 40 × 0.5 % × 2 % × 0.25 → σ p = 0.83    million \sigma_p^2=20^2\times0.5\%^2+40^2\times2\%^2+2\times20\times40\times0.5\%\times2\%\times0.25\to\sigma_p=0.83\;\text{million} σp2=202×0.5%2+402×2%2+2×20×40×0.5%×2%×0.25σp=0.83million

VaR ( X % ) = ∣ μ portfolio − Z X % × σ portfolio ∣ = 1.65 × 0.83 = 1.37    million \text{VaR}(X\%)=|\mu_{\text{portfolio}}-Z_{X\%}\times\sigma_{\text{portfolio}}|=1.65\times0.83=1.37\;\text{million} VaR(X%)=μportfolioZX%×σportfolio=1.65×0.83=1.37million

2.2.2 Delta-gamma approximation

Taylor Series approximation(Delta-gamma approximation): the change in the derivative value is approximated by slope and curvature. The first derivative is delta linear approximation and second derivative is the gamma correction.

Delta-gamma approximation cannot provide accurate approximation for portfolio with non-linear derivatives such as MBS, barrier options, as the normal distribution assumption for the change of risk factors does not translate into the normal distribution assumption for the change of portfolio value.

Although adding gamma can work much better and the result is a quadratic model. But there are no easy-to-use analytic results for quadratic model.

VaR bond = ∣ − D × P ∣ × VaR yield − 1 2 × C × P × VaR yield 2 \text{VaR}_{\text{bond}}=|-D\times P|\times \text{VaR}_{\text{yield}}-\frac{1}{2}\times C\times P\times \text{VaR}_{\text{yield}}^2 VaRbond=D×P×VaRyield21×C×P×VaRyield2

VaR option = ∣ Δ ∣ × VaR stock − 1 2 × Γ × VaR stock 2 \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}-\frac{1}{2}\times\Gamma\times \text{VaR}_{\text{stock}}^2 VaRoption=∣Δ∣×VaRstock21×Γ×VaRstock2

注意是减去 gamma correction

Stephen Ross, a trader of Neptune Security, has a call option position on CAC-40 index. The index is 5345 5345 5345 currently. Stephen uses BSM model to analyze the option, which has N ( d 1 ) = 0.67 N(d1)=0.67 N(d1)=0.67, N ( d 2 ) = 0.576 N(d2)=0.576 N(d2)=0.576. In this call option contract, every point of index values € 5 €5 €5. The daily volatility of the underlying index is 0.45 % 0.45\% 0.45%. What should be the 95 % 95\% 95% daily dollar VaR \text{VaR} VaR of this call option under delta-normal approach?

VaR stock = 1.65 × 0.45 % × 5345 × 5 = 198.433 \text{VaR}_{\text{stock}}=1.65\times0.45\%\times5345\times5=198.433 VaRstock=1.65×0.45%×5345×5=198.433

Δ = N ( d 1 ) = 0.67 \Delta=N(d1)=0.67 Δ=N(d1)=0.67

VaR option = ∣ Δ ∣ × VaR stock = 0.67 × 198.433 = 132.95 \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}=0.67\times198.433=132.95 VaRoption=∣Δ∣×VaRstock=0.67×198.433=132.95

2.3 Historical Simulation

Historical simulation is a non-parametric method, where the future behavior of the underlying market variable is determined in a very direct way from their past behavior. These scenarios can be evaluated using full revaluation.

Steps of historical simulation:
(1) Identify risk factors (equity price, interest rate etc.) on which the value of the portfolio under consideration depends.

  • Percentage change(equity price, foreign exchange)
  • Actual change(interest rate, credit spread)

(2) Collect daily data on the behavior of the risk factors over a period in the past.

DayStock Price
(USD)
Int. RatePort.Val.
(USD million)
0 50 50 50 2.52 % 2.52\% 2.52% 72.1 72.1 72.1
1 52 52 52 2.54 % 2.54\% 2.54% 72.5 72.5 72.5
2 46 46 46 2.55 % 2.55\% 2.55% 70.4 70.4 70.4
498 60 60 60 2.30 % 2.30\% 2.30%
498 60 60 60 2.32 % 2.32\% 2.32% 75.3 75.3 75.3
500 63 63 63 2.36 % 2.36\% 2.36% 76.3 76.3 76.3

(3) Create scenario by assuming that the change in each risk factor over the next day corresponds to a change observed during one of the previous days.

ScenarioStock Price
(USD)
Int. RatePort.Val.
(USD million)
Loss
(USD million)
1 65.52 65.52 65.52 2.38 % 2.38\% 2.38% 76.8 76.8 76.8 − 0.5 -0.5 0.5
2 55.73 55.73 55.73 2.37 % 2.37\% 2.37% 71.7 71.7 71.7 4.6 4.6 4.6
499 63.00 63.00 63.00 2.38 % 2.38\% 2.38% 75.3 75.3 75.3 1 1 1
500 66.15 66.15 66.15 2.40 % 2.40\% 2.40% 76.7 76.7 76.7 − 0.4 -0.4 0.4

(4) Sort the loss based on the scenarios and calculate VaR or ES for any given confidence level.

Scenario21019522348367235
Loss(USD millions)7.86.54.64.33.93.73.5

ES daily ( 1 % ) = ( 7.8 + 6.5 + 4.6 + 4.3 ) / 4 = 5.8    million \text{ES}_{\text{daily}}(1\%)=(7.8+6.5+4.6+4.3)/4=5.8\;\text{million} ESdaily(1%)=(7.8+6.5+4.6+4.3)/4=5.8million

VaR daily ( 1 % ) = 3.9    million \text{VaR}_{\text{daily}}(1\%)=3.9 \;\text{million} VaRdaily(1%)=3.9million

Advantages

  • It is easy to implement and not exposed to model risk.
  • Actual market prices are accumulated for full revaluation.
  • All correlations risk factors are included in the prices.

Disadvantages:

  • It gives equal weight to all the observations.
  • Historical data may not be a good forecast for future.
  • It cannot reflect the new volatility and correlation changing in the market condition instantly.

2.4 Monte Carlo Simulation

Monte Carlo simulations generate scenarios by taking random samples from the distributions assumed for the risk factors (rather than using historical data). Monte Carlo simulation is a full revaluation method.

Steps of Monte Carlo Simulation:
(1) Value the portfolio today using the current values of the risk factors.

(2)Sample once from the multivariate normal probability distribution for the change of risk factors. (e. G. Stock price interest rate change)

(3) Use the sampled values of the change of risk factor to determine the values of the risk factors at the end of the period under consideration (usually one day).

(4) Revalue the portfolio using these risk factor values. Subtract this portfolio value from the current value to determine the loss.

(5) Repeat steps 2 to 5 many times to determine a probability distribution for the loss.

Advantages:

  • Can generate correlated scenarios and model the correlations among different risk factors based on a statistical distribution.
  • Work for both linear and non-linear portfolio.

Disadvantages:

  • There is model risk for the generation of statistical distribution on the risk factor.
  • Computationally intensive and thus quite slow
  • The correlation and standard deviation for the risk factor in the past may not be a good indicator of the future.

Summary

CategoryHistorical SimulationDelta Normal ApproachMonte Carlo Simulation
Full RevaluationYesNoYes
Model Risk
Distribution assumption
NoYesYes
Computationally intensiveYesNoYes

2.5 Correlation Breakdown

During periods of heightened volatility, correlations can be very different from those under normal market conditions. Correlations usually increase under stressed market conditions. This is sometimes called a correlation breakdown.

When calculating VaR \text{VaR} VaR or E S ES ES, we are concerned estimating what would happen under extreme market conditions. Therefore, we should try and estimate the correlation in such case rather than in normal market conditions.

2.6 Worst case analysis

Worst case analysis: an analyst will calculate statistics for worst-case results.

Monte Carlo simulation can be used to calculate the expected worst-case result over 52 weeks, the 95th percentile of the worst-case result.

It should not be regarded as an alternative to VaR \text{VaR} VaR and E S ES ES.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值