关于支付宝--我的攒钱计划--利率计算说明

 

这是支付宝上面的一个理财计划,每月攒50,攒5年,攒本金3000,10年后开始领,最后收益一共1040.5元;我们来算一算它的收益率:

 

1、攒五年:

我们按照月利率来计算;

设月利率为x;

为了方便表示,我们用 y = 1+x;

第1个月存50本金:本金+利息为  50*(1+x)  即为 50*y

第2个月存50本金:本金+利息为  ((50*y)+50)*y = 50*y^2+50*y

第3个月存50本金:本金+利息为  50*y^3+50*y^2+50*y

…….

一共存5年,60个月,这期间我们一直在存本金;

第60个月存50本金:本金+收益为  50*y^60+50*y^59+….+50*y

                                         利用等比数列化简为 : 50*((y^61-y)/(y-1)) 

50*((y^61-y)/(y-1)) 这就是我们存了5年后的  本金+利息

 

2、10年后开始领:

这时候我们不增加本金,但是一直有利息;

因为是10年后领,代表我们又存了6年,72个月;

本金+利息   =    50*((y^61-y)/(y-1))*(y^72

 

3、我们领3年

按照以下方式来领:

2030年  12月30日               600元

2031年  12月30日               600元

2032年  12月30日               600元

2033年  12月30日               2240.50元

 

刚才我们算出在领钱之前所有的 本金+利息  = Z =50*((y^61-y)/(y-1))*(y^72

第一年领600:

剩下的  本金+利息 =  Z - 600

第二年领600:

在此期间我们剩下的 本金+利息 还需要再计算一次利息:

我们的  本金+利息 =  (Z - 600)*y^12

剩下的  本金+利息 =  (Z - 600)*y^12 - 600

第三年领600:

在此期间我们剩下的 本金+利息 还需要再计算一次利息:

我们的  本金+利息 =  ((Z - 600)*y^12 - 600)*y^12

剩下的  本金+利息 =  ((Z - 600)*y^12 - 600)*y^12 - 600

第四年领剩下的2240.5:

在此期间我们剩下的 本金+利息 还需要再计算一次利息:

我们的  本金+利息 =  (((Z - 600)*y^12 - 600)*y^12 - 600)*y^12

也就是剩下的  本金+利息 = 2240.5

所以  (((Z - 600)*y^12 - 600)*y^12 - 600)*y^12 = 2240.5

 

4、开始计算年利率

按照上面的领取方式可以列出如下式子:

(((Z-600)*y^12-600)*y^12-600)*y^12 = 2240.5;

将Z =50*((y^61-y)/(y-1))*(y^72

   y = x+1

带入可以得到:

-((((50*(x + 1)^72*(x - (x + 1)^61 + 1))/x + 600)*(x + 1)^12 + 600)*(x + 1)^12 + 600)*(x + 1)^12  = 2240.5 

利用matlab求解函数,解出其中的x值

x = solve('-((((50*(x + 1)^72*(x - (x + 1)^61 + 1))/x + 600)*(x + 1)^12 + 600)*(x + 1)^12 + 600)*(x + 1)^12 = 2240.5','x')

x=0.002330021294372645689625358197281

x为月利率

那么年利率则为 x*12 = 0.02796  ,该攒钱计划的年利率近似约为  2.8%

以上!算毕!

结论:

神理财。。。。。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ah_yl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值