leetcode之编辑距离问题

编辑距离问题

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

分析问题:

一共有四钟操作: 插入,删除,替换,跳过

if s1[i] == s2[j]:
  啥都别做(skip)
  i, j 同时向前移动
  else:
  三选一:
    插入(insert)
    删除(delete)
    替换(replace)

所以可以用递归

(1) 确定函数 int dp(int i,int j,string& word1,string& word2)//这个函数的作用就是,返回s1[0,i] s2[0,j]的最小编辑距离

(2) 终止条件

 if(i==-1) return j+1;//也就是 i没有,那么我的j就要操作size()下删除
 if(j==-1) return i+1;

(3)函数作用实现及返回上一层什么: 返回三种操作中的最小值

所以最后实现

class Solution {
public:
    //解法一,递归
    int minDistance(string word1, string word2) {
        //递归解决,方法如下
        int res=dp(word1.size()-1,word2.size()-1,word1,word2);
        return res;
    }
    int dp(int i,int j,string& word1,string& word2)//这个函数的作用就是,返回s1[0,i] s2[0,j]的最小编辑距离
    {
        //边界条件
        if(i==-1) return j+1;//也就是 i没有,那么我的j就要操作size()下插入
        if(j==-1) return i+1;
        //在四总操作取最小的编辑距离,返回上一层我们这一层计算得到的结果
        if(word1[i]==word2[j]) return dp(i-1,j-1,word1,word2);
        else if(word1[i]!=word2[j])
        {
            //返回删除,插入,替换的最小操作距离
            int tmp=min(dp(i-1,j,word1,word2)+1,dp(i,j-1,word1,word2)+1);//比较删除和插入操作
            return min(tmp,dp(i-1,j-1,word1,word2)+1);
        }
        return -1;
    }
};

因为,递归存在重复的子问题,所以可以用动态规划进行优化(备忘录或dp table)

可以参考这篇博客)

在这里插入图片描述

class Solution {
public:
    //解法二,动态规划
    int minDistance(string word1, string word2) {
    int row=word1.size()+1;
    int col=word2.size()+1;//s1->s2
    // if(row==0&&col==0) return 0;
    // if(row==0) return col;
    // if(col==0) return row;
    vector<vector<int>> dp(row,vector<int>(col,0));
    //初始化dp table
    for(int i=0;i<col;i++)
    {
        dp[0][i]=i;
    }
    for(int j=0;j<row;j++)
    {
        dp[j][0]=j;
    }
    //写出状态转移方程
    for(int i=1;i<row;i++)
    {
        for(int j=1;j<col;j++)
        {
            if(word1[i-1]==word2[j-1])
            {
                dp[i][j]=dp[i-1][j-1];
                continue;
            }
            else if(word1[i-1]!=word2[j-1])
            {
                int tmp=min(dp[i-1][j]+1,dp[i][j-1]+1);
                dp[i][j]=min(tmp,dp[i-1][j-1]+1);
            }
        }
    } 
    return dp[row-1][col-1]; 

    }
};
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值