YoloV5标签格式

YoloV5标签格式

含义

左上角为坐标原点,还有左上角坐标,右下角坐标,标注长宽

格式转化

装换代码

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile

classes=["person"]


def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(image_id):
    in_file = open('datasets/Annotations/%s.xml' %image_id)
    out_file = open('datasets/YOLOLabels/%s.txt' %image_id, 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()

wd = os.getcwd()
wd = os.getcwd()
# data_base_dir = os.path.join(wd, "datesets/")
data_base_dir = wd
if not os.path.isdir(data_base_dir):
    os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "datasets/")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
        os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
        os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
        os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
        os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
        os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
        os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
        os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
        os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
        os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)

train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
list_imgs = os.listdir(image_dir) # list image files
probo = random.randint(1, 100)
print("Probobility: %d" % probo)
for i in range(0,len(list_imgs)):
    path = os.path.join(image_dir,list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    probo = random.randint(1, 100)
    print("Probobility: %d" % probo)
    if(probo < 80): # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention) # convert label
            copyfile(image_path, yolov5_images_train_dir + voc_path)
            copyfile(label_path, yolov5_labels_train_dir + label_name)
    else: # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention) # convert label
            copyfile(image_path, yolov5_images_test_dir + voc_path)
            copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()

归一化

预测框回归

### YOLOv5 标签格式与使用方法 YOLOv5 是一种高效的目标检测框架,其标签文件采用 `.txt` 格式存储。这种格式简单明了,便于处理和解析。以下是关于 YOLOv5 标签格式及其使用方法的详细介绍。 #### 1. 文件结构 在构建 YOLOv5 数据集时,需遵循特定的目录结构。标准的文件夹布局如下: ``` dataset/ ├── images/ # 存放图片文件 │ ├── train/ # 训练集图片 │ └── val/ # 验证集图片 └── labels/ # 存放对应的标签文件 ├── train/ # 训练集标签 └── val/ # 验证集标签 ``` 每张图片对应一个同名的 `.txt` 文件存放在 `labels` 文件夹下[^1]。 --- #### 2. 标签格式 YOLOv5标签文件每一行表示一个目标对象,具体格式为: ``` <class_id> <x_center> <y_center> <width> <height> ``` 其中: - `<class_id>`:类别索引(从0开始计数),例如如果数据集中有两类物体分别为“猫”和“狗”,则可以定义 “猫=0, 狗=1”。 - `<x_center>, <y_center>`:目标边界框中心点相对于整幅图像宽度和高度的比例坐标,范围为 `[0, 1]`。 - `<width>, <height>`:目标边界框宽高相对于整幅图像宽度和高度的比例尺寸,同样范围为 `[0, 1]`。 计算公式如下: ```python x_center = (box_xmin + box_width / 2) / image_width y_center = (box_ymin + box_height / 2) / image_height width = box_width / image_width height = box_height / image_height ``` 注意:所有数值均应保留至少6位小数以提高精度。 --- #### 3. JSON 转 TXT 工具 对于某些数据集(如 COCO 或自定义 JSON 格式标注数据),可能需要将其转换为 YOLOv5 支持的 `.txt` 格式。以下是一个简单的 Python 脚本实现此功能: ```python import json from pathlib import Path def convert_json_to_txt(json_file, output_dir): with open(json_file, 'r') as f: data = json.load(f) for img_info in data['images']: img_id = img_info['id'] file_name = img_info['file_name'].split('.')[0] txt_path = Path(output_dir) / f"{file_name}.txt" annotations = [] for ann in data['annotations']: if ann['image_id'] == img_id: category_id = ann['category_id'] - 1 # 假设类别ID从1开始 bbox = ann['bbox'] x_min, y_min, width, height = bbox image_w, image_h = img_info['width'], img_info['height'] x_center = round((x_min + width / 2) / image_w, 6) y_center = round((y_min + height / 2) / image_h, 6) w_ratio = round(width / image_w, 6) h_ratio = round(height / image_h, 6) line = f"{category_id} {x_center} {y_center} {w_ratio} {h_ratio}" annotations.append(line) with open(txt_path, 'w') as out_f: out_f.write("\n".join(annotations)) # 示例调用 convert_json_to_txt('data.json', './labels/train') ``` 该脚本读取 JSON 文件中的标注信息并生成相应的 `.txt` 文件[^2]。 --- #### 4. 使用 LabelImg 进行手动标注 LabelImg 是一款常用的图像标注工具,支持多种输出格式。要生成符合 YOLOv5 标准的 `.txt` 文件,请按照以下步骤操作: 1. 下载并安装 LabelImg; 2. 启动程序后加载待标注的图片; 3. 按键盘上的 `W` 键绘制矩形框,并输入目标类别的名称; 4. 设置导出路径及格式为 Pascal VOC XML,默认会保存为 `.xml` 文件; 5. 利用第三方脚本将 `.xml` 文件批量转换为 `.txt` 文件][^[^34]。 --- #### 5. 注意事项 - 如果标注文件未严格遵守上述格式,则可能导致后续可视化或训练过程中出现问题。 - 对于大规模数据集推荐自动化方式完成标签转换工作,减少人为误差。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值