题意:进行一个串的粉刷 使得第一个串刷成第二个串 然后刷的方式是粉刷一段为同一种颜色即可
解法:的确是很巧妙的构造方法 首先考虑将一个完全白的串粉刷成目标串需要的最少的次数 然后我们就会发现 这是一个很简单的dp问题 然后我们解决的了这个问题之后再考虑当前已经是串1的情况下 那么我们粉刷到某一个位置的时候
如果这个位置上的颜色和目标颜色已经相同 那么这就是会是 dp[i-1] 然后如果不同呢 那么就要进行分段 然后所得到的大小就是 分段再 前面某一个起点的段所需要的大小 那么这就可以直接用到第一个问题已经求出来的答案了
#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 111
char s1[maxn],s2[maxn];
int dp[maxn][maxn],ans[maxn],k,n;
int main(){
while(~scanf("%s%s",s1,s2)){
n=(int)strlen(s1);
memset(dp,0,sizeof dp);
// i-->j
for(int j=0;j<n;++j){
for(int i=j;i>=0;--i){
dp[i][j]=dp[i+1][j]+1;
for(int k=i+1;k<=j;++k){
if(s2[i]==s2[k])
dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]);
}
}
}
for(int i=0;i<n;++i)ans[i]=dp[0][i];
for(int i=0;i<n;++i){
if(s1[i]==s2[i])ans[i]=ans[i-1];
else{
for(int j=0;j<i;++j)ans[i]=min(ans[i],ans[j]+dp[j+1][i]);
}
}
printf("%d\n",ans[n-1]);
}
return 0;
}