凸优化1:凸优化(Convex Optimization)介绍

0、笔记介绍

本系列笔记参考视频:中科大凸优化

参考书

1、本课程可以称作优化/数学规划(Optimization/Mathemetical Programming)

优化:从一个可行解的集合中,寻找最优的元素

从定义中可以看出,优化有三处需要注意的地方:1、有可行解的集合 2、寻找 3、最优

优化的数学表示为:
{ m i n i m i z e   f 0 ( x ) s u b j e c t   t o    f i ( x ) ≤ b i , i = 1 , 2 , . . . . m ( 任 何 等 式 都 可 以 描 述 成 两 个 不 等 式 , 即 A = B ⇔ A ≤ B   & &   − A ≤ − B ) \left\{ \begin{matrix} minimize \space f_0 (x) \\ subject \space to \space\space f_i(x) \leq b_i,i=1,2,....m \\ (任何等式都可以描述成两个不等式,即A=B \Leftrightarrow A \leq B \space\&\&\space -A \leq -B) \end{matrix} \right. minimize f0(x)subject to  fi(x)bi,i=1,2,....m(A=BAB && AB)
其中:
{ x = [ x 1 , x 2 , . . . , x n ] T f 0 : R n → R      o b j e c t i v e   f u n c t i o n f i : R n → R      i n e q u a l i t y   c o n s t r a i n t \left\{ \begin{matrix} x=[x_1,x_2,...,x_n]^T \\ f_0 : R^n \rightarrow R \space\space\space\space objective \space function\\ f_i : R^n \rightarrow R \space\space\space\space inequality \space constraint \end{matrix} \right. x=[x1,x2,...,xn]Tf0:RnR    objective functionfi:RnR    inequality constraint
我们找到的最优解为:
X ∗   o p t i m a l   ⇔   ∀   z , z ∈ { f i ( z ) ≤ b i , i = 1 , 2 , . . . , m } , f 0 ( z ) ≥ f 0 ( X ∗ ) X^* \space optimal \space \Leftrightarrow \space \forall \space z,z \in \lbrace f_i(z) \leq b_i,i=1,2,...,m \rbrace , f_0(z) \geq f_0 (X^*) X optimal   z,z{fi(z)bi,i=1,2,...,m},f0(z)f0(X)

2、优化举例

E x 1 : Ex1: Ex1:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yXPBvgMg-1642768445559)(D:\StudyFiles\ConvexOptimization\note\1.凸优化介绍\1-1.png)]

{ c o n s t r a i n t : x ≤ a , − x ≤ − a f e a s i b l e   s e t :   [ − a . a ] \left\{ \begin{matrix} constraint:x\leq a,-x \leq -a \\ feasible \space set:\space [-a.a] \end{matrix} \right. {constraint:xa,xafeasible set: [a.a]
E x 2 : Ex2: Ex2:最优解并不只有一个,可能存在一个最优解集合

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-al7hgfYw-1642768445561)(D:\StudyFiles\ConvexOptimization\note\1.凸优化介绍\1-2.png)]

E x 3 : Ex3: Ex3:数据拟合问题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A23vikhC-1642768445561)(D:\StudyFiles\ConvexOptimization\note\1.凸优化介绍\1-3.png)]

{ 拟 合 曲 线    y = a x 2 + b x + c m i n    ε 1 2 + ε 2 2 + . . . + ε n 2 ε i = y i − ( a x 2 + b x + c ) \left\{ \begin{matrix} 拟合曲线 \space\space y=ax^2+bx+c \\ min \space\space {\varepsilon^2_1}+{\varepsilon^2_2}+...+{\varepsilon^2_n} \\ {\varepsilon}_i=y_i-(ax^2+bx+c) \end{matrix} \right. 线  y=ax2+bx+cmin  ε12+ε22+...+εn2εi=yi(ax2+bx+c)
E x 4 : Ex4: Ex4:线性二次调节器 L Q R LQR LQR
X k = A X k − 1 + B u k min ⁡ u k    J = ∑ i = 1 n ( X k T Q X k + U k T R U k ) X_k=AX_{k-1}+Bu_k \\ {\underset {u_k}{\operatorname {min} }} \space\space J=\sum_{i=1}^n(X^T_k Q X_k+U^T_k R U_k) Xk=AXk1+Bukukmin  J=i=1n(XkTQXk+UkTRUk)
E x 5 : Ex5: Ex5:多用户能量控制问题
P i : 用 户 能 量      0 ≤ P ≤ b i 用 户 之 间 通 信 会 对 其 它 用 户 产 生 干 扰 ( 这 里 不 计 较 单 位 问 题 ) 信 干 燥 比 S I M R i = P i σ i 2 + ∑ i = 1 n α j i P j f i    正 比 于    log ⁡ ( 1 + P i σ i 2 + ∑ i = 1 n α j i P j ) P_i:用户能量 \space\space\space\space 0 \leq P \leq b_i \\ 用户之间通信会对其它用户产生干扰(这里不计较单位问题)\\ 信干燥比SIMR_i = \frac{P_i}{{\sigma^2_i+\sum_{i=1}^n} {\alpha_{ji}P_j}} \\ f_i \space\space正比于\space\space \log(1+{\frac{P_i}{\sigma^2_i+\sum_{i=1}^n {\alpha_{ji}P_j}}}) Pi:    0PbiSIMRi=σi2+i=1nαjiPjPifi    log(1+σi2+i=1nαjiPjPi)
E x 6 : Ex6: Ex6:图像处理 T V TV TV范数

E x 7 : Ex7: Ex7:超大规模集成电路

门电路 { g 1 , g 2 , . . . , g N } \{g_1,g_2,...,g_N\} {g1,g2,...,gN}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lSEadhsO-1642768445562)(D:\StudyFiles\ConvexOptimization\note\1.凸优化介绍\1-4.png)]

将门电路连成有向图P

{ t i , . . . , t m } \{t_i,...,t_m\} {ti,...,tm}每个 t i t_i ti表示一种连接方式
{ m a x   P ( x ) s . t .   x ∈ { t i , . . . , t M } \left\{ \begin{matrix} max \space P(x) \\ s.t. \space x \in \{t_i,...,t_M\} \end{matrix} \right. {max P(x)s.t. x{ti,...,tM}
E x 8 : Ex8: Ex8:最短路径问题

无向图 { V , E } \{V,E\} {V,E}
m i n ∑ i , j ∈ E W i j X i j      x i j = 0   o r   1 ⇒ x i j ≥ 0 其 中 : ∑ j x i j − ∑ j x j i = { 1 ,      i = S − 1 ,      i = d      0 ,      o t h e r w i s e min \sum_{i,j \in E}W_{ij}X{ij} \space\space\space\space x_{ij}=0 \space or \space 1 \Rightarrow x_{ij} \geq 0\\ 其中:\sum_{j} x_{ij} - \sum_{j}x_{ji}=\left\{ \begin{matrix} 1,\space\space\space\space i=S \\ -1,\space\space\space\space i=d \\ \space\space\space\space0, \space\space\space\space otherwise \end{matrix} \right. mini,jEWijXij    xij=0 or 1xij0jxijjxji=1,    i=S1,    i=d    0,    otherwise

3、优化问题的分类

线性规划/非线性规划

f i ( α x + β y ) = α f i ( x ) + β f i ( y )      ∀   i = 0 , 1 , . . . , m f_i(\alpha x+ \beta y)=\alpha f_i(x)+\beta f_i(y) \space\space\space\space \forall \space i=0,1,...,m fi(αx+βy)=αfi(x)+βfi(y)     i=0,1,...,m

线性规划问题的特点是最优解在顶点或边上

凸规划/非凸规划

f i ( α x + β y ) ≤ α f i ( x ) + β f i ( y )      ∀   i = 0 , 1 , . . . , m f_i(\alpha x+ \beta y) \leq \alpha f_i(x)+\beta f_i(y) \space\space\space\space \forall \space i=0,1,...,m fi(αx+βy)αfi(x)+βfi(y)     i=0,1,...,m

光滑/非光滑

连续/离散

单目标/多目标

4、本课程主要内容

凸集、凸函数

凸优化

若干算法

非常经典,我们教材就用的这个!该版本非常清晰,强烈推荐! Preface xi 1 Introduction 1 1.1 Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Least-squares and linear programming . . . . . . . . . . . . . . . . . . 4 1.3 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Nonlinear optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 I Theory 19 2 Convex sets 21 2.1 Affine and convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Some important examples . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Operations that preserve convexity . . . . . . . . . . . . . . . . . . . . 35 2.4 Generalized inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Separating and supporting hyperplanes . . . . . . . . . . . . . . . . . . 46 2.6 Dual cones and generalized inequalities . . . . . . . . . . . . . . . . . . 51 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 Convex functions 67 3.1 Basic properties and examples . . . . . . . . . . . . . . . . . . . . . . 67 3.2 Operations that preserve convexity . . . . . . . . . . . . . . . . . . . . 79 3.3 The conjugate function . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4 Quasiconvex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.5 Log-concave and log-convex functions . . . . . . . . . . . . . . . . . . 104 3.6 Convexity with respect to generalized inequalities . . . . . . . . . . . . 108 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 viii Contents 4 Convex optimization problems 127 4.1 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3 Linear optimization problems . . . . . . . . . . . . . . . . . . . . . . . 146 4.4 Quadratic optimization problems . . . . . . . . . . . . . . . . . . . . . 152 4.5 Geometric programming . . . . . . . . . . . . . . . . . . . . . . . . . . 160 4.6 Generalized inequality constraints . . . . . . . . . . . . . . . . . . . . . 167 4.7 Vector optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5 Duality 215 5.1 The Lagrange dual function . . . . . . . . . . . . . . . . . . . . . . . . 215 5.2 The Lagrange dual problem . . . . . . . . . . . . . . . . . . . . . . . . 223 5.3 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 232 5.4 Saddle-point interpretation . . . . . . . . . . . . . . . . . . . . . . . . 237 5.5 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 5.6 Perturbation and sensitivity analysis . . . . . . . . . . . . . . . . . . . 249 5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 5.8 Theorems of alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 258 5.9 Generalized inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 II Applications 289 6 Approximation and fitting 291 6.1 Norm approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 6.2 Least-norm problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 6.3 Regularized approximation . . . . . . . . . . . . . . . . . . . . . . . . 305 6.4 Robust approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 6.5 Function fitting and interpolation . . . . . . . . . . . . . . . . . . . . . 324 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 7 Statistical estimation 351 7.1 Parametric distribution estimation . . . . . . . . . . . . . . . . . . . . 351 7.2 Nonparametric distribution estimation . . . . . . . . . . . . . . . . . . 359 7.3 Optimal detector design and hypothesis testing . . . . . . . . . . . . . 364 7.4 Chebyshev and Chernoff bounds . . . . . . . . . . . . . . . . . . . . . 374 7.5 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Contents ix 8 Geometric problems 397 8.1 Projection on a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 8.2 Distance between sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 8.3 Euclidean distance and angle problems . . . . . . . . . . . . . . . . . . 405 8.4 Extremal volume ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . 410 8.5 Centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 8.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 8.7 Placement and location . . . . . . . . . . . . . . . . . . . . . . . . . . 432 8.8 Floor planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 III Algorithms 455 9 Unconstrained minimization 457 9.1 Unconstrained minimization problems . . . . . . . . . . . . . . . . . . 457 9.2 Descent methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 9.3 Gradient descent method . . . . . . . . . . . . . . . . . . . . . . . . . 466 9.4 Steepest descent method . . . . . . . . . . . . . . . . . . . . . . . . . 475 9.5 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 9.6 Self-concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 9.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 10 Equality constrained minimization 521 10.1 Equality constrained minimization problems . . . . . . . . . . . . . . . 521 10.2 Newton’s method with equality constraints . . . . . . . . . . . . . . . . 525 10.3 Infeasible start Newton method . . . . . . . . . . . . . . . . . . . . . . 531 10.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 11 Interior-point methods 561 11.1 Inequality constrained minimization problems . . . . . . . . . . . . . . 561 11.2 Logarithmic barrier function and central path . . . . . . . . . . . . . . 562 11.3 The barrier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 11.4 Feasibility and phase I methods . . . . . . . . . . . . . . . . . . . . . . 579 11.5 Complexity analysis via self-concordance . . . . . . . . . . . . . . . . . 585 11.6 Problems with generalized inequalities . . . . . . . . . . . . . . . . . . 596 11.7 Primal-dual interior-point methods . . . . . . . . . . . . . . . . . . . . 609 11.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 x Contents Appendices 631 A Mathematical background 633 A.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 A.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 A.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 A.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 A.5 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 B Problems involving two quadratic functions 653 B.1 Single constraint quadratic optimization . . . . . . . . . . . . . . . . . 653 B.2 The S-procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 B.3 The field of values of two symmetric matrices . . . . . . . . . . . . . . 656 B.4 Proofs of the strong duality results . . . . . . . . . . . . . . . . . . . . 657 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 C Numerical linear algebra background 661 C.1 Matrix structure and algorithm complexity . . . . . . . . . . . . . . . . 661 C.2 Solving linear equations with factored matrices . . . . . . . . . . . . . . 664 C.3 LU, Cholesky, and LDLT factorization . . . . . . . . . . . . . . . . . . 668 C.4 Block elimination and Schur complements . . . . . . . . . . . . . . . . 672 C.5 Solving underdetermined linear equations . . . . . . . . . . . . . . . . . 681 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 References 685 Notation 697 Index 701
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值