凸优化2:凸集(convex set)

1、仿射集 Affine sets

定义1:一个集合 C C C是仿射集,若 ∀   x 1 , x 2 ∈ C \forall \space x_1,x_2 \in C  x1,x2C,则连接 x 1 x_1 x1 x 2 x_2 x2直线也在集合内
直 线 x 1 ≠ x 2 ∈ R n , θ ∈ R y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) ∈ R n 直线x_1 \neq x_2 \in R^n, \theta \in R \\ y=\theta x_1+(1-\theta)x_2\\ =x_2+\theta(x_1-x_2) \in R^n 线x1=x2Rn,θRy=θx1+(1θ)x2=x2+θ(x1x2)Rn
定义2:
∀    x 1 , . . . , x k ∈ C θ 1 , . . . , θ k ∈ R θ 1 + . . . + θ k = 1 仿 射 组 合 θ 1 x 1 + . . . + θ k x k ∈ C \forall \space\space x_1,...,x_k \in C\\ \theta_1,...,\theta_k \in R \\ \theta_1+...+\theta_k=1 \\ 仿射组合\theta_1 x_1+...+\theta_k x_k \in C   x1,...,xkCθ1,...,θkRθ1+...+θk=1仿θ1x1+...+θkxkC
证明两种定义等价:
有 仿 射 集 C , x 1 , x 2 , x 3 ∈ C , θ 1 , θ 2 , θ 3 ∈ R , θ 1 + θ 2 + θ 3 = 1 θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ∈ C 将 上 式 作 为 一 个 点 , 由 凸 集 性 质 有 : ( θ 1 + θ 2 ) ( θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ) + ( 1 − θ 1 − θ 2 ) x 3 ∈ C ⇒ θ 1 x 1 + θ 2 x 2 + θ 3 x 3 = 1 有仿射集C,x_1,x_2,x_3 \in C,\theta_1,\theta_2,\theta_3 \in R,\theta_1+\theta_2+\theta_3=1 \\ \frac{\theta_1}{\theta_1+\theta_2}x_1+\frac{\theta_2}{\theta_1+\theta_2}x_2 \in C\\ 将上式作为一个点,由凸集性质有:\\ (\theta_1+\theta_2)(\frac{\theta_1}{\theta_1+\theta_2}x_1+\frac{\theta_2}{\theta_1+\theta_2}x_2)+(1-\theta_1-\theta_2)x_3 \in C \\ \Rightarrow \theta_1 x_1+\theta_2 x_2+\theta_3 x_3=1 仿C,x1,x2,x3C,θ1,θ2,θ3R,θ1+θ2+θ3=1θ1+θ2θ1x1+θ1+θ2θ2x2C(θ1+θ2)(θ1+θ2θ1x1+θ1+θ2θ2x2)+(1θ1θ2)x3Cθ1x1+θ2x2+θ3x3=1
仿射集的性质:
∀    x 1 , x 2 ∈ C , C 是 仿 射 集 , θ x 1 + ( 1 − θ ) x 2 ∈ C 我 们 称 与 C 相 关 的 子 空 间 V = C − x 0 = { x − x 0 ∣ x ∈ C } , ∀    x 0 ∈ C \forall \space\space x_1,x_2 \in C,C是仿射集,\theta x_1+(1-\theta)x_2 \in C\\ 我们称与C相关的子空间V=C-x_0=\{x-x_0|x \in C\},\forall \space\space x_0 \in C   x1,x2C,C仿θx1+(1θ)x2CCV=Cx0={xx0xC},  x0C
E x 1 : Ex1: Ex1线性方程组的解集是仿射集
C = { x ∣ A x = b } , A ∈ R m × n , b ∈ R m , x ∈ R n ∀    x 1 , x 2 ∈ C , A x 1 = b , A x 2 = b C=\{x|Ax=b\},A \in R^{m \times n},b \in R^m,x \in R^n \\ \forall \space\space x_1,x_2 \in C, Ax_1=b,Ax_2=b \\ C={xAx=b},ARm×n,bRm,xRn  x1,x2C,Ax1=b,Ax2=b

证 明 : θ x 1 + ( 1 − θ ) x 2 ∈ C A ( θ x 1 + ( 1 − θ ) x 2 ) ⇒ θ A x 1 + ( 1 − θ ) A x 2 = θ b + ( 1 − θ ) b = b 证明:\theta x_1+(1-\theta) x_2 \in C\\ A(\theta x_1+(1-\theta)x_2)\\ \Rightarrow \theta A x_1+(1-\theta)A x_2=\theta b+(1-\theta)b=b θx1+(1θ)x2CA(θx1+(1θ)x2)θAx1+(1θ)Ax2=θb+(1θ)b=b

任意集合 C C C,构造尽可能小的仿射集

引入新定义:仿射包
a f f    C = { θ 1 x 1 + . . . + θ k x k ∣ ∀    x 1 , . . . x k ∈ C , ∀    θ 1 + . . . + θ k = 1 } aff \space\space C=\{\theta_1 x_1+...+\theta_k x_k|\forall\space\space x_1,...x_k \in C,\forall \space\space \theta_1+...+\theta_k=1\} aff  C={θ1x1+...+θkxk  x1,...xkC,  θ1+...+θk=1}

2、凸集 Convex Set

定义:一个集合 C C C是凸集,当任意两点之间的线段仍然在 C C C

数学描述:
C 为 凸 集 ⇔ ∀    x 1 , x 2 ∈ C , ∀   θ , θ ∈ [ 0 , 1 ] , θ x 1 + ( 1 − θ ) x 2 ∈ C C为凸集 \Leftrightarrow \forall \space\space x_1,x_2 \in C, \forall \space \theta,\theta \in [0,1] ,\theta x_1+(1-\theta)x_2 \in C C  x1,x2C, θ,θ[0,1],θx1+(1θ)x2C
仿射集一定是一个凸集

引入新定义凸组合
x 1 , . . . , x k 的 凸 组 合 为    θ 1 x 1 + . . . θ k x k 其 中 : θ 1 , . . . , θ k ∈ R θ 1 + . . . + θ k = 1 θ 1 , . . . , θ k ∈ [ 0 , 1 ] x_1,...,x_k的凸组合为\space\space \theta_1 x_1+...\theta_k x_k \\ 其中:\theta_1,...,\theta_k \in R \\ \theta_1+...+\theta_k=1\\ \theta_1,...,\theta_k \in [0,1] x1,...,xk  θ1x1+...θkxkθ1,...,θkRθ1+...+θk=1θ1,...,θk[0,1]
定理: C C C为凸集 ⇔ \Leftrightarrow 任意元素的凸组合 ∈ C \in C C

引入新定义凸包 C ∈ R n C \in R^n CRn
C o n v   C = { θ 1 x 1 + . . . + θ k x k ∣ ∀   x 1 , . . . , x k ∈ C , ∀   θ 1 , . . . , θ k ∈ [ 0 , 1 ] , θ 1 + . . . + θ k = 1 } Conv \space C=\{\theta_1 x_1+...+\theta_k x_k|\forall \space x_1,...,x_k \in C,\\ \forall \space \theta_1,...,\theta_k \in [0,1], \theta_1+...+\theta_k=1\} Conv C={θ1x1+...+θkxk x1,...,xkC, θ1,...,θk[0,1],θ1+...+θk=1}

3、锥 Cone 凸锥 Convex Cone

定义: C C C是锥 ⇔   ∀   x ∈ C , θ ≥ 0 \Leftrightarrow \space \forall \space x \in C, \theta \geq 0   xC,θ0 θ x ∈ C \theta x \in C θxC

C C C是凸锥 ⇔   ∀   x 1 , x 2 ∈ C , θ 1 , θ 2 ≥ 0 \Leftrightarrow \space \forall \space x_1,x_2 \in C, \theta_1,\theta_2 \geq 0   x1,x2C,θ1,θ20 θ 1 x 1 + θ 2 x 2 ∈ C \theta_1 x_1+\theta_2 x_2 \in C θ1x1+θ2x2C

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cDBarTbl-1642768887432)(D:\StudyFiles\ConvexOptimization\note\2.凸集\2-1.png)]

引入新定义:

凸锥组合 θ 1 x 1 + θ 2 x 2 + . . . + θ k x k , θ 1 , . . . , θ k ≥ 0 \theta_1 x_1+\theta_2 x_2+...+\theta_k x_k, \theta_1,...,\theta_k \geq 0 θ1x1+θ2x2+...+θkxk,θ1,...,θk0

凸锥包 x 1 , . . . , x k ∈ C x_1,...,x_k \in C x1,...,xkC { θ 1 x 1 + . . . + θ k x k ∣ x 1 , . . . , x k ∈ C , θ 1 , . . . , θ k ≥ 0 } \{\theta_1 x_1+...+\theta_k x_k|x_1,...,x_k \in C, \theta_1,...,\theta_k \geq 0\} {θ1x1+...+θkxkx1,...,xkC,θ1,...,θk0}

下图为三个凸锥包的示例:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VZrn8ipj-1642768887434)(D:\StudyFiles\ConvexOptimization\note\2.凸集\2-2.png)]

4、仿射组合、凸组合、凸锥组合的对比:

仿射组合 ∀   θ 1 , . . . , θ k \forall \space \theta_1,...,\theta_k  θ1,...,θk θ 1 + . . . + θ k = 1 \theta_1+...+\theta_k=1 θ1+...+θk=1
凸组合 ∀   θ 1 , . . . , θ k \forall \space \theta_1,...,\theta_k  θ1,...,θk θ 1 + . . . + θ k = 1 θ 1 + . . . + θ k ∈ [ 0 , 1 ] \theta_1+...+\theta_k=1\\\theta_1+...+\theta_k \in [0,1] θ1+...+θk=1θ1+...+θk[0,1]
凸锥组合 ∀   θ 1 , . . . , θ k \forall \space \theta_1,...,\theta_k  θ1,...,θk θ 1 + . . . + θ k ≥ 0 \theta_1+...+\theta_k \geq 0 θ1+...+θk0

5、一些重要结论

  • 只由一个点构成的集合 C = { X } C=\{X\} C={X}是仿射集、凸集
  • 若该点为原点,则C为凸锥,否则不是凸锥
  • 空集是仿射集、凸集、凸锥
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值