第904期机器学习日报(2017-03-10)

机器学习日报 2017-03-10

@好东西传送门 出品,由@AI100运营, 过往目录 见http://ml.memect.com

订阅:关注微信公众号 AI100(ID:rgznai100,扫二维码),回复“机器学习日报”,加你进日报群

微信公众号:rgznai100

本期话题有:

全部7 算法5 深度学习2 自然语言处理2 资源2 经验总结1

用日报搜索找到以前分享的内容: http://ml.memect.com/search/

今日焦点 (5)

网路冷眼 网页版 2017-03-10 19:42

算法 资源 自然语言处理 PDF 机器翻译 课程 论文 神经网络

【Neural Machine Translation and Sequence-to-sequence Models: A Tutorial】卡内基梅隆大学语言技术研究所论文《神经机器翻译和序列到序列模型的教程》,PDF格式,点击链接下载: http://t.cn/RiHOqPS

阿里云云栖社区 网页版 2017-03-10 16:02

算法 Python R语言

#云栖技术分享# 《机器学习算法基础(Python和R语言实现)》通过这篇指导,我会使你能够解决机器学习的一些问题并获得相应的一些经验。我会对几个不同的机器学习算法提供一些概要性的阐述,并且提供Python编码和R语言编码的实现。这应该足够让你开始这个领域的实际的操作。 http://t.cn/RiH4nlB

ArnetMiner 网页版 2017-03-10 15:05

经验总结 算法 资源 PDF 博客 课程 论文

【分享】《Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning》机器学习中的梯度下降算法(及其常用形式)简介 http://t.cn/RiHwfRh 文末给出了应用梯度下降时的小提示,以及一些课程、论文 http://t.cn/RiHwfR7资源。来源:analyticsvidhya 作者:Faizan Shaikh ​

InfoQ 网页版 2017-03-10 08:34

深度学习 Python

【TensorFlow领衔,七大深度学习框架大对比!】[喵喵][喵喵] TensorFlow 在 2015 年年底一出现就受到了极大的关注,在一个月内获得了 GitHub上超过一万颗星的关注,目前在所有的机器学习、深度学习项目中排名第一,甚至在所有的 Python 项目中也排名第一。 http://t.cn/RiTMyy1
爱可可-爱生活 网页版 2017-03-10 06:14

深度学习 算法 Alexander Uhlmann Java 神经网络

【(Java)轻量级前馈神经网络/深度学习库】“NewralNet – A lightweight, easy to use and open source Java library for experimenting with feed-forward neural nets and deep learning” by Alexander Uhlmann http://t.cn/RiTbKNX

最新动态

2017-03-10 (2)

tobe-陈迪豪 网页版 2017-03-10 10:35

代码

升级了deep_recommend_system项目,现在支持直接多线程batch读多文件的CSV训练数据,对于稠密的模型输入用户再也不用转成TFRecords了,支持shuffle读,支持多线程加载数据,不需要把数据集全部加载到内存,可直接读HDFS或对象存储,推荐试用 http://t.cn/Rt7ddEi

爱可可-爱生活 网页版 2017-03-10 05:37

算法 自然语言处理 Miriam Shiffman 代码 主题模型

【TensorFlow实现的lda2vec:LDA+word2vec】’lda2vec-tf – tensorflow port of the lda2vec model for unsupervised learning of document + topic + word embeddings’ by Miriam Shiffman GitHub: http://t.cn/RiT4a99

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值