离散傅里叶变换(DFT)和逆离散傅里叶变换(IDFT)可用于图像上的频域分析。要找到图像的傅立叶变换,我们使用函数 cv2.dft() 和 cv2.idft() 。我们可以应用傅里叶变换来分析各种滤波器的频率特性。
步骤
要找到输入图像的傅里叶变换,可以按照以下步骤进行 –
- 导入必需的库。在以下所有Python示例中,所需的Python库为 OpenCV,Numpy 和 Matplotlib。 请确保您已经安装了它们。
-
使用 cv2.imread() 方法将输入图像加载为灰度图像。还将灰度图像的类型转换为 float32 。
-
使用 cv2.dft() 在图像上找到离散傅里叶变换。
-
调用 np.fft.fftshift() 将零频率分量移动到频谱的中心。
-
应用对数变换并可视化幅度谱。
-
为了可视化转换后的图像,我们应用反向变换 np.fft.ifftshift() 和 cv2.idft() 。请参见下面讨论的第二个示例。
让我们看一些示例,以便更清楚地理解问题。
输入图像
我们将在以下示例中使用此图像作为输入文件。
示例
在此程序中,我们找到输入图像的离散傅里叶变换。我们查找并绘制幅度谱。
# 导入必要的库
import numpy as np
import cv2
from matplotlib import pyplot as plt
# 读取输入图像
img = cv2.imread('film.jpg',0)
# 计算图像的离散傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
# 将频率为零的分量移动到频谱的中心
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(
dft_shift[:,:,0],
dft_shift[:,:,1])
)
# 显示输入图像和幅度谱
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('输入图像'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('幅度谱'), plt.xticks([]), plt.yticks([])
plt.show()
输出
运行以上Python程序,将会产生以下输出窗口 −
示例
在这个程序中,我们计算了输入图像的离散傅里叶变换,使用反函数进行图像重建,比如 ifftshift() 和 idft() 。
导入 numpy 作为 np
导入 cv2
从 matplotlib 导入 pyplot 作为 plt
# 读取输入图像
img = cv2.imread('film.jpg',0)
# 寻找图像的离散傅里叶变换
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
# 将零频率分量移动到频谱中心
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow,ccol = rows//2 , cols//2
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# 应用掩模和反向离散傅里叶变换
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
# 可视化图像
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('输入图像'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('幅度谱'), plt.xticks([]), plt.yticks([])
plt.show()
为帮助更多对人工智能感兴趣的小伙伴们能够有效的系统性的学习以及论文的研究,小编特意制作整理了一份人工智能学习资料给大家,整理了很久,非常全面。
大致内容包括一些人工智能基础入门视频和文档+AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等学习资料、课件源码、国内外知名精华资源、以及AI热门论文等全套学习资料。
需要以上这些文中提到的资料,请点击此处→【人工智能全套完整VIP资料】即可免费获取。
看完三件事❤️
- 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
- 点赞,转发,有你们的『点赞和评论』,才是我创造的动力。
- 关注作者公众号 『 AI技术星球 』,不定期分享原创知识。
- 关注后回复【007】扫码即可获取学习资料包。
- 同时可以期待后续文章ing🚀。