机器学习:线性判别式分析(LDA)

线性判别式分析(LDA)是一种经典模式识别算法,用于高维样本的降维和分类。LDA通过最大化类间距离和最小化类内距离实现最佳可分离性。与PCA不同,LDA考虑了样本标签,适用于有监督学习。LDA降维后维度受限于类别数,且不保证正交性。尽管存在样本分布和分类信息依赖的限制,但LDA在许多场景下表现出良好的效果。
摘要由CSDN通过智能技术生成

1.概述

线性判别式分析(Linear Discriminant Analysis),简称为LDA。也称为Fisher线性判别(Fisher Linear Discriminant,FLD),是模式识别的经典算法,在1996年由Belhumeur引入模式识别和人工智能领域。

基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。

LDA与PCA都是常用的降维技术。PCA主要是从特征的协方差角度,去找到比较好的投影方式。LDA更多的是考虑了标注,即希望投影后不同类别之间数据点的距离更大,同一类别的数据点更紧凑。

但是LDA有两个假设:1.样本数据服从正态分布,2.各类得协方差相等。虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合。

2.图解说明(图片来自网络)

可以看到两个类别,一个绿色类别,一个红色类别。左图是两个类别的原始数据,现在要求将数据从二维降维到一维。直接投影到x1轴或者x2轴,不同类别之间会有重复,导致分类效果下降。右图映射到的直线就是用LDA方法计算得到的,可以看到,红色类别和绿色类别在映射之后之间的距离是最大的,而且每个类别内部点的离散程度是最小的(或者说聚集程度是最大的)。

3.图解LAD与PCA的区别

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值