基于图神经网络模型的最小连通支配集构造算法MATLAB仿真
概述:
在实际应用中,需要找到一个图的最小连通支配集,该最小连通支配集包含了图中所有节点,并且其中的任意一点被移除后,整个图会断裂成为不连通的子图。本文提出了基于图神经网络模型的最小连通支配集构造算法,并在MATLAB平台上进行了仿真。
算法描述:
1.构造输入图的邻接矩阵;
2.根据邻接矩阵生成图神经网络模型;
3.利用图神经网络模型获取每个节点的特征向量;
4.使用K-means算法对节点特征向量进行聚类;
5.在每个簇中选择一个点作为代表点,构造初始的最小连通支配集;
6.按照贪心策略,从未覆盖的节点中选取一个度数最大的节点加入最小连通支配集中,直至所有节点均被覆盖。
MATLAB代码实现:
1.构造邻接矩阵:
A = [0, 1