基于图神经网络模型的最小连通支配集构造算法MATLAB仿真

727 篇文章 277 订阅 ¥59.90 ¥99.00
本文介绍了一种基于图神经网络的最小连通支配集构造算法,该算法在MATLAB中进行仿真。首先,通过邻接矩阵构建图神经网络模型,然后利用模型获取节点特征并进行K-means聚类。接着,采用贪心策略构建初始支配集,最终得到近似最优解。实验表明该算法能有效解决实际问题。
摘要由CSDN通过智能技术生成

基于图神经网络模型的最小连通支配集构造算法MATLAB仿真

概述:
在实际应用中,需要找到一个图的最小连通支配集,该最小连通支配集包含了图中所有节点,并且其中的任意一点被移除后,整个图会断裂成为不连通的子图。本文提出了基于图神经网络模型的最小连通支配集构造算法,并在MATLAB平台上进行了仿真。

算法描述:
1.构造输入图的邻接矩阵;
2.根据邻接矩阵生成图神经网络模型;
3.利用图神经网络模型获取每个节点的特征向量;
4.使用K-means算法对节点特征向量进行聚类;
5.在每个簇中选择一个点作为代表点,构造初始的最小连通支配集;
6.按照贪心策略,从未覆盖的节点中选取一个度数最大的节点加入最小连通支配集中,直至所有节点均被覆盖。

MATLAB代码实现:
1.构造邻接矩阵:

A = [0, 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值