深度学习啃“花书”指南

本文介绍了深度学习及被称为深度学习圣经的“花书”。深度学习用深度神经网络进行机器学习和数据挖掘,在多领域有进展。“花书”分三部分,涵盖数学、算法、各类神经网络等知识,但未涉及深度强化学习,相关内容可看CS231n公开课。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习,即用深度神经网络进行机器学习和数据挖掘。进几年在图像识别、语音识别、自然语言处理等领域取得了革命性进展。
“花书”因书的封面为花园而得名,被业界称为深度学习的圣经,它用500页篇幅详细讲解了深度学习的数学、算法、各式各样的神经网络及其前沿进展。有最简单的机器学习的数学基础(线性代数、概率论),二分类的逻辑回归,处理图像数据的卷积神经网络,处理序列数据的循环神经网络,长短时记忆神经网络,生成数据的生成对抗网络。
以“花书”的中文版为例,“花书”一共分为三部分。
第一部分是应用数学与机器学习基础,其实就是我们本科学的数学加上一点机器学习基础。
第二部分会介绍各式各样的神经网络,有简单的深度前馈网络,处理图像数据的卷积神经网络,处理序列数据的循环神经网络和递归神经网络,以及训练神经网络过程中的一些注意事项(如使用正则化防止过拟合,使用各种各样的优化器来加速收敛)。第二部分是整个“花书”的核心,因为深度学习就是用深度神经网络来进行机器学习和数据挖掘,第二部分讲述的就是各种各样的深度神经网络。
第三部分是深度学习前沿的研究,比如线性因子模型、自动编码器、表示学习、结构化概率模型。从第16章到第20章,整个五章都在讲深度学习和概率相结合的内容,比如蒙特卡罗方法、马尔科夫链、配分函数、近似推断、深度生成模型。在深度生成模型中还会介绍非常火热的生成对抗网络。
在“花书”的第十一页,有一个思维导图,这个思维导图就展示了整本花书的三个部分
在这里插入图片描述
上图是一个有向图~
“花书”涉及到深度学习的方方面面,但是有一方面它未涉及到,就是深度强化学习,强化学习在近几年取得了非常显著的进展,从阿尔法GO到游戏,再到各种金融数据都离不开强化学习。“花书”的一个缺失就是没有写深度强化学习的相关内容。关于这部分内容,可以去b站看CS231n公开课啦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值