全概率公式习题解析
基础题目解析
题目1解析:基础应用
该题需要应用全概率公式。首先确定样本空间的划分:选择盒子A、B或C,这三个事件互斥且和为1。
设事件R表示"取出红球",事件A、B、C分别表示"选择盒子A、B、C"。
已知条件:
- P(A) = P(B) = P© = 1/3(三个盒子被选中的概率相等)
- P(R|A) = 3/5(从盒子A中取出红球的概率)
- P(R|B) = 2/7(从盒子B中取出红球的概率)
- P(R|C) = 4/5(从盒子C中取出红球的概率)
根据全概率公式:
P® = P(R|A)P(A) + P(R|B)P(B) + P(R|C)P©
P® = (3/5)(1/3) + (2/7)(1/3) + (4/5)(1/3)
P® = (3/5 + 2/7 + 4/5)/3
P® = (21/35 + 10/35 + 28/35)/3
P® = 59/105 ≈ 0.5619 = 56.19%
因此,取出的球是红球的概率约为56.19%。
题目2解析:两阶段抽样
设事件S表示"选择标准骰子",事件B表示"选择有偏骰子",事件E表示"掷骰结果为偶数"。
已知条件:
- P(S) = P(B) = 1/2(两个骰子被选中的概率相等)
- P(E|S) = 3/6 = 1/2(标准骰子掷出偶数的概率)
- P(E|B) = 1/4 + 1/8 + 1/8 = 1/2(有偏骰子掷出偶数的概率,即2、4、6的概率之和)
根据全概率公式:
P(E) = P(E|S)P(S) + P(E|B)P(B)
P(E) = (1/2)(1/2) + (1/2)(1/2)
P(E) = 1/4 + 1/4
P(E) = 1/2 = 50%
因此,掷骰结果为偶数的概率为50%。
题目3解析:扑克牌问题
这个问题需要应用条件概率和贝叶斯公式,可以通过全概率公式的角度思考。
设事件A、B、C分别表示"牌被放在堆A、B、C中",事件R表示"抽出的牌是红色的"。
已知条件:
- P(A) = 0.5,P(B) = 0.3,P© = 0.2(各牌堆被选中的概率)
- P(R|A) = P(R|B) = P(R|C) = 26/52 = 1/2(标准扑克牌中红色牌占一半)
题目要求P(A|R),根据贝叶斯公式:
P(A|R) = [P(R|A)P(A)] / P®
其中P®通过全概率公式计算:
P® = P(R|A)P(A) + P(R|B)P(B) + P(R|C)P©
P® = (1/2)(0.5) + (1/2)(0.3) + (1/2)(0.2)
P® = 0.25 + 0.15 + 0.1
P® = 0.5
因此:
P(A|R) = (1/2)(0.5) / 0.5
P(A|R) = 0.25 / 0.5
P(A|R) = 0.5 = 50%
所以,已知抽出的牌是红色的情况下,它被放在牌堆A中的概率为50%。
中级题目解析
题目4解析:电路可靠性
设事件W表示"电路正常工作",事件A、B、C分别表示"部件1选择型号A、B、C",事件D、E分别表示"部件2选择型号D、E"。
已知条件:
- P(A) = 0.3,P(B) = 0.5,P© = 0.2(部件