矩阵分析与应用

行列式

一个n*n的正方矩阵A的行列式记作det(A)\left | A \right |,定义为:

det(A)=\left | A \right |=\begin{vmatrix} a_{11} & a_{12} &.. . &a_{1n} \\ a_{21} &a_{22} &.. . &a_{2n} \\ .. . & .. .& .. .& .. .\\ a_{n1}&a_{n2} &.. . &a_{nn} \end{vmatrix}

A =\left \{ a \right \} \in C^{1 \times 1},则它的行列式由det(A)=a给出。

矩阵A去掉第i行和第j列之后得到的剩余行列式记作A_{ij},称为元素a_{ij}的余子式,特别地,i=j时,A_{ii}称为A的主子式,若令A_{ij}是n*n矩阵A删去第i行和第j列之后得到的(n-1)*(n-1)子矩阵,则

A_{ij}=(-1)^{i+j}det(A_{ij})

一个n*n矩阵的行列式等于其任意行(或列)的元素与相对应的余子式的乘积之和,即:
det(A)=a_{i1}A_{i1}+a_{i2}A_{i2}+.. .a_{in}A_{in}=\sum_{j=1}^{n}a_{ij}(-1)^{i+j}det(A_{ij})

或者:
det(A)=a_{1j}A_{1j}+a_{2j}A_{2j}+.. .a_{nj}A_{nj}=\sum_{i=1}^{n}a_{ij}(-1)^{i+j}det(A_{ij})

因此,行列式需要递推计算:n阶行列式由(n-1)阶行列式计算,(n-1)阶行列式又由(n-2)行列式计算等。

行列式计算结果若不为零,则被称为非奇异矩阵,非奇异矩阵A存在逆矩阵A^{-1}

行列式服从以下等式关系:

  • 若矩阵的两行(或列)互换位置,行列式的值不变。
  • 若矩阵的某行(或列)是其他行(或列)的线性组合,则det(A)=0
  • 若某行(或列)与另一行(或列)成正比或者相等,或者某行(或列)的元素均等于零。则det(A)=0
  • 任意正方矩阵A和它的转置矩阵具有相同的行列式,即det(A)=det(A^{T})
  • 单位矩阵的行列式的值为1。
  • 一个Hermitian矩阵的行列式为实数,因为:det(A)=det(A^{H})=det(A^{T})\Rightarrow det(A)=det(A^{*})=[det(A)]^{*}
  • 两个矩阵乘积的行列式的值等于他们的行列式的值的乘积,即:det(AB)=det(A)det(B),A,B \in C^{m \times n}
  • 对于一个三角(上三角或下三角)矩阵A,其行列式的值等于三角矩阵主对角线所有元素的乘积,即:det(A)=\prod_{i=1}^{n}a_{ii};对角矩阵的行列式的值等于其对角元素的乘积。
  • 给定一个任意常数(可以是复数)c,则det(cA)=c^{n}det(A)
  • 若A非奇异,则det(A^{-1})=(det(A))^{-1}
  • 对于矩阵A_{m \times m},B_{m \times n},C_{n \times m},D_{n \times n},分块矩阵的行列式满足:                                            A非奇异时,det\begin{bmatrix} A & B\\ C&D \end{bmatrix}=det(A)det(D-CA^{-1}B)                                                         或当D非奇异时,det\begin{bmatrix} A & B\\ C&D \end{bmatrix}=det(D)det(A-BD^{-1}C)

行列式满足以下不等式关系:

  •  若A,B都是m*n的矩阵,则:

\left | (A^{H}B) \right |^{2} \leqslant det(A^{H}A)det(B^{H}B)

  • 对于m*m矩阵A,有:

det(A)\leqslant \prod_{i=1}^{m}\left ( \sum_{j=1}^{m}\left | a_{ij} \right |^{2} \ \right )^{1/2}

  • A_{m \times m},B_{m \times n},C_{n \times n},,则:

det\begin{bmatrix} A & B\\ B^{H}&D \end{bmatrix}\leqslant det(A)det(C)

矩阵的秩

在p维向量的集合之中,最多存在p个线性无关的向量。

矩阵的线性无关行数与线性无关列数相同。

矩阵的秩定义为该矩阵中线性无关的行(或列)的数目。

根据秩的大小,矩阵方程A_{m \times n}x_{n \times 1}=b_{m \times 1}可分成以下三种类型:

  • 适定方程:适定表示方程组的解是唯一的,若m=n,并且矩阵A非奇异,则称矩阵方程为适定方程。
  • 欠定方程:欠定表示独立方程个数比独立的未知参数的个数少,意味着方程个数不足以确定方程的唯一解,即存在无穷多组解。
  • 超定方程:超定表示独立方程个数比独立的未知参数的个数多,没有使得方程组严格满足的精确解。

矩阵A的列空间R(A)的维数定义为该矩阵的秩,即有:
r_{A}=dim[R(A)]

关于矩阵A的秩有以下等价叙述:

  • rank(A)=k
  • A的k列且不多于k列组成一线性无关组。
  • A的k行且不多于k行组成一线性无关组。
  • A的一个k*k的子矩阵有非零行列式,A的所有(k+1)*(k+1)子矩阵都具有零行列式。
  • 列空间R(A)的维数等于k。

r_{B}=rank(B)r_{A}=rank(A),则乘积矩阵AB的秩r_{AB}=rank(AB)满足不等式:

r_{AB}\leqslant min\left \{ r_{A},r_{B} \right \}

m*n矩阵A左乘非奇异矩阵或右乘非奇异矩阵,将不改变A的秩。

rank[A,B] \leqslant rank(A)+rank(B)

rank(A+B)\leqslant rank[A,B] \leqslant rank(A)+rank(B)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值