线性代数导论14——正交向量与子空间

本文是Gilbert Strang的线性代数导论课程笔记。课程地址: http://v.163.com/special/opencourse/daishu.html  
第十四课时:正交向量与子空间
本文讲解什么是向量的正交,什么是子空间的正交,什么是基的正交。

记住上图,四个子空间两两正交。

正交向量
在n维空间中,向量之间的夹角是90度,
判断两个向量X,Y是否正交,求乘积XTY是否等于0,即如果XTY=0,则X,Y正交。证明如下:
零向量与任何向量都正交。

正交子空间
如果子空间S与子空间T正交,那么S中的每个向量都和T中的每个向量正交。
举个例子,无限延伸的墙壁和垂直地面是正交子空间吗?两个平面中有很多个向量是不正交的,特别的,他们相交直线上的向量就很明显不满足。
如果两个子空间正交,那么他们必定不会交与某个非零向量。
一个平面内的某些子空间是正交的,比如零向量和平面内任意其他子空间正交。平面内两条垂直的直线子空间也是正交子空间。
行空间和零空间是将整个n维空间一分为二的两个相互正交的子空间,两个子空间的维数和为n,称为n维空间里面的正交补(行空间的正交补包含与之正交的零空间的所有)。证明:
若Ax=0存在零空间,则零空间的向量与A的乘Ax=0,则表示A的各行乘以x向量得到零向量,说明A的行向量与x是正交的,但是是否A的行空间(行空间包含这些行向量线性组合得到的所有向量)里所有的向量都与x正交呢?很明显x正交于行向量的线性组合。
列空间和左零空间是将整个m维空间一分为二的两个相互正交的子空间,两个子空间的维数和为m,称为m维空间里面的正交补。证明同上。
以三维空间为例,n=3,矩阵A如果行空间是一维的一条直线,r=1,那么dimN(A)=2,零空间就是垂直于这条直线的一个平面。实际上向量(1 2 5)是这个平面的法向量。

可以把线性代数的内容分为几个部分:
1)第一部分是线性代数的基本定理,表明四个基本子空间之间的关系,重点是研究维数;
2)第二部分的重点是在已知维数的情况下研究它们的正交性;
3)第三部分是关于它们的基,即正交基。

如何求Ax=b 一个无解的方程组的解,即当Ax=b无解时(b不在A的列空间),如何去解这个方程组。
对于长方矩阵(很多情况下是无解的,因为b很可能不能由A的列向量线性组合得到),有时候A的m方程很多,n未知数很少,这时候有些方程可能得到的结果是有很大误差的,即坏数据,即b中有一部分是坏数据,其实求出方程的解只需要一小部分方程就够了,需要做的是, 把这些”坏数据“筛选出来,这是线性代数需要解决的问题,如何去求这个解,最优解是什么。
用代数的语言来描述这个问题:我们得到一些方程(这些方程无解),如何求出它们的最优解?一种方法是不断去掉一些方程,直到剩下一个可逆的方阵,然后求出它的解。但这种方法不好判断。
更好的方法是:矩阵A是m×n的长方矩阵,那么 ATA结果就是一个n×n的对称方阵。因此,当Ax=b这是一个坏方程时,只需要把坏方程两侧乘以A转置,就得到好方程。
注意变换之后x'是与Ax=b是不同的,我们希望新的方程组是可解的,而且这是最优解。
对于ATA,它不一定是可逆的,ATA的秩等于A的秩,因此AT A的零空间等于A的零空间。(下讲证明)
N(ATA)=N(A)
Rank(ATA)=Rank(A)
因此可得当且仅当A的零空间里面只有零向量(A的各列线性无关)时, AT A可逆
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值