漫步线性代数十四——正交和子空间

基是无关向量的集合,他们可以生成一个空间。几何上,它是坐标轴的集合,没有这些坐标轴也可以定义向量空间,但是每次我们考虑 xy 平面和三维空间空间或 Rn 时,就会用到坐标轴,他们通常是互相垂直的!在选择基的时候,我们倾向于选择一个正交基。

正交基的想法是线性代数基本内容之一,我们需要一个基将几何转变为代数计算,而正交基可以让计算更加容易,再特殊一点:向量长度为1。对于一个正交基(正交单位向量),我们将找到

  • 向量的长度 x ;
  • xTy=0 来测试是否是正交向量;
  • 如何从线性无关向量中构建垂直向量

不仅向量是垂直的,子空间也可以是垂直的。我们会看到基本子空间旋转90度将会相遇,这四个子空间有两对是垂直的,一对在 Rm 中,一对在 Rn 中,这些内容将填补线性代数的基本定理。

第一步是找出向量的长度,我们用 x 来表示,在二维空间中它是直角三角形的斜边(图1a),长度的平方根据毕达哥拉斯定理得到: x2=x21+x22


这里写图片描述
图1

在三维空间里, x=(x1,x2,x3) 是盒子的对角线(图1b),两次应用毕达哥拉斯定理就能求出它的长度。首先是底面二维平面上 (x1,x2,0)=(01,2,0) ,它和垂直边 (0,0,x3)=(0,0,3) 夹角是直角,再次利用毕达哥拉斯得出斜边 x 的长度:

x2=12+22+32x=x21+x22+x23

由此可以立刻扩展到 n 为空间,利用毕达哥拉斯n1次, Rn 中的长度 x xTx 正的平方根:

x2=x21+x22++x2n=xTx(1)

这个平方和等于 xTx x=(1,2,3) 的长度是 14

xTx=[123]123=12+22+(3)2=14

正交向量

我们如何判断两个向量 x,y 是否正交呢?图2中正交测试是什么?在平面中旋转 x,y ,这些向量夹角为直角,所以正交,考虑 a2+b2=c2

x2+y2=xy2(2)

利用长度公式(1), Rn 的正交测试变为

(x21++x2n)+(y21++y2n)=(x1y1)2++(xnyn)2

右边的每一项 (xiyi)2 多处一个 2xiyi

=(x21++x2n)2(x1y1++xnyn)+(y21++y2n)

xiyi 的和为零时,三角形才是直角的:

xTy=x1y1++xnyn=0(3)

xTy=Σxiyi=yTx 表示行向量 xT 和列向量的乘积:

xTy=[x1xn]y1yn=x1y1++xnyn(4)

这个数也叫作标量乘法或点乘,用 (x,y) xy 表示,以后我们统一使用内积,并且使用符号 xTy

1、当且仅当 x,y 是正交向量时,他们的内积 xTy 是零。如果 xTy>0 ,那么他们的角度小于90度;如果 xTy<0 ,那么他们的角度大于90度。

x 长度的平方等于它和自身的内积:xTx=x21++x2n=x2,长度为零的向量是零向量,它是唯一一个自己跟自己垂直的向量,并且向量 x=0 Rn 中的所有向量都垂直。


这里写图片描述
图2

例1 (2,2,1) (1,2,2) 正交,长度都为 4+4+1=3

有用的事实:如果非零向量 v1,,vk 互相正交(每个向量和其他所有向量垂直),那么这些向量是线性无关的。

证明:假设 c1v1++ckvk=0 ,为了说明 c1 必须为零,我们用 v1 和两边进行内积,根据正交性只留下了一项:

vT1(c1v1++ckvk)=c1vT1v1=0(5)

这些向量都是非零的,所以 vT1v10 ,从而 c1=0 。我们用每个 ci 进行同样的操作得到相同的事实, v 得到零的唯一组合就是ci=0:无关!

Rn 中的坐标向量 e1,,en 是最重要的正交向量,他们是单位矩阵的列,是 Rn 最简单的基,并且还是单位向量——每个长度为 ei=1 。他们都沿着坐标轴,如果坐标轴旋转,那就就产生新的基:一个新的互相正交单位向量系统,在 R2 中我们有 cos2θ+sin2θ=1

v1=(cosθ,sinθ),v2=(sinθ,cosθ)

正交子空间

我们现在处理两个子空间的正交性。一个子空间的每个向量与另一个空间的每个向量都正交时,这两个子空间才是正交的。 R3 子空间的维数可以是0,1,2或者3,这些子空间可以用通过原点的直线或平面表示——极端的情况就是只有原点或整个空间。子空间 0 和其他所有子空间都是正交的,一条直线可以和另一条直线正交,或者和一个平面正交,但是平面不可能和一个平面正交。

考虑一间屋子,竖直的墙面和地板所在的平面看着就是垂直的啊,但是根据我们的定义,他们不是垂直的!我们在竖直墙面上随便做出两条线 v,w ,他们和两个面的交线夹角就不是直角。

2、对于 Rn 空间中的两个子空间 V,W ,如果 V 中的每个向量和W中的每个向量是正交的: vTw=0 ,那么子空间是正交的。

例2:假设 V 是由v1=(1,0,0,0) v2=(1,1,0,0) 生成的平面,如果 W w=(0,0,4,5)生成的直线,那么 w 和所有的v是正交的,线空间 W 将和整个平面V正交。

这种情况下, R4 的两个子空间维数为2和1,还有空间来容纳第三个子空间。通过 z=(0,0,5,4) 的直线 L 垂直于V,W,那么维数加起来是 2+1+1=4 。现在有个疑问,什么空间对 V,W,L 都垂直呢?

正交子空间不是偶然就出现了,他们两个是同时出现的。事实上正交子空间肯定存在:他们是基本的子空间!第一对是零空间和行空间。他们是 Rn 的子空间——行有 n 个元素并且Ax=0中的 x 也有n个元素。接下来我们就来说明 A 的行和零空间中的向量x是正交的。

3、正交的基本定理:行空间和零空间( Rn )是正交的;列空间和左零空间( Rm )是正交的。

证明1:假设 x 是零空间中的向量,那么Ax=0 m 个方程的系统可以写成A的行乘以 x

Ax=row 1row 2row mx1x2xn=000(6)

第一个方程的关键点是: row 1 x 正交。他们的内积是零,对于每个方程,右边都是零,所以x与每行都正交,因此 x 与行的各种组合正交。零空间中的x与行空间中的每个向量都是正交的,所以 N(A)C(AT)

另一对正交子空间来自 ATy=0 或者 yTA=0

yTA=[y1ym]column1columnn=[00](7)

向量 y 和每个列正交,根据方程可以看出,右边全是零,因此y和列的所有组合是正交的。它正交于列空间: N(AT)C(A) ,用 A 替换AT后就跟前面的一模一样了。

证明2:和无坐标的证明进行对比会非常有益,它将给出更加抽象的推理方法,我希望大家能够完全理解这个证明。

如果 x 在零空间里,那么Ax=0,如果 v 在行空间里,存在某个行的组合:v=ATz,那么

vTx=(ATz)Tx=zTAx=zT0=0(8)

例3:假设 A 的秩为1,那么它的行空间和列空间都是直线:

A=123269

行是 (1,3) 的倍数,零空间包含 x=(3,1) ,它和所有的行正交,零空间和行空间是 R2 中正交的两条直线:

[13][31]=0[26][31]=0[39][31]=0

与此相反,其他的两个子空间在 R3 中,列空间是通过 (1,2,3) 的直线,左零空间肯定垂直于平面 y1+2y2+3y3=0 ,这个方程也就是 yTA=0

前两个子空间的维数为 1+1=2 ,后两个子空间维数为 1=2=3 。一般情况下,行空间和零空间维数加起来为 r+(nr)=n ,另外两个空间为 r+(mr)=m ,除了正交外还发生了其他事,也就是维数。

毫无疑问,零空间垂直于行空间——但是它不是全部事实。 N(A) 包含了所有垂直于行空间的向量,因为零空间是由 Ax=0 的所有解组成的。

定义:给定 Rn 的一个子空间 V ,所有和V垂直的向量组成的空间叫做 V 的正交补,用V表示。

利用这个术语,零空间是行空间的正交补: N(A)=(C(AT)) ,同时行空间包含所有与零空间垂直的向量。位于行空间外的向量 z 不可能和零空间正交,因为加上z作为 A 的额外行的话会扩大行空间,但是我们知道有一个固定的等式r+(nr)=n

dim()+dim()=

每个正交于零空间的向量都在行空间内: C(AT)=(N(A))

同样的推理应用到 AT 上得到对偶的结果:左零空间 N(AT) 和列空间 C(A) 是正交补的关系。他们的维数加起来 (mr)+r=m ,至此就完成了线性代数基本定理得第二部分。第一部分给出四个子空间的维数,包括列的秩等于行的秩。现在我们还知道他们是垂直的,不仅如此,他们还是正交补的关系。

4、线性代数基本定理:零空间是行空间的正交补;左零空间是列空间的正交补。
再强调一下,行空间包含所有正交零空间的向量,列空间包含所以正交左零空间的向量。对于 Ax=b ,我们能直接看出方程要成立 b 必须在列空间,但思考一下会发现,要成立的话b必须与左零空间垂直。

5、方程 Ax=b yTA=0 ,那么当且仅当 yTb=0 时是方程可解。

最直接的方法是 b 是列的组合,间接的方法是b必须与列正交的每个向量正交。这个方法不太直观,但是如果只有一个或两个向量和列正交的话,它很容易检查 yTb=0 是否成立,前面讲的基尔霍夫电压定律就是很好的例子,测试闭环为零比识别列的组合更加容易。

Ax=b 的左边加起来为零时,右边也必须为零:

x1x2x3x2x3x1===b1b2b3b1+b2+b3=0A=101110011

测试 b1+b2+b3=0 可以知道 b 正交左零空间的y=(1,1,1),根据基本定理, b 是列的一个组合!

矩阵和子空间

我们强调V,W是正交的,但是不是正交补。他们的维数太小,由 (0,1,0) 生成的线空间 V (0,0,1)生成的线空间 W 是正交的,但是V不是 W 。当维数正确的时候,正交子空间才可能是正交补:

W=V,V=WdimV+dimW=n

也就是说 V=V V,W 的维数正确的话,整个空间 Rn 就能分解为两个垂直的部分(图3)。


这里写图片描述
图3

Rn 分成正交的部分后,每个向量分成 x=v+w ,向量 v x V 上的投影,正交部分的w x W上的投影,下一篇文章我将介绍如何找出 x 的这些投影。

图4总结了线性代数的基本定理,它给出了矩阵的实际效果—— 乘法Ax内部发生了什么。零空间变成零向量,每个 Ax 在列空间里,没有任何东西会变到左零空间里,实际操作发生在行空间和列空间之间,并且还能看到向量 x ,它由行空间的元素和零空间的元素组成,x=xr+xn。当用矩阵 A 相乘时,得到Ax=Axr+Axn:


这里写图片描述
图4

  1. 零空间的元素变成零: Axn=0
  2. 行空间的元素变到列空间里: Axr=Ax

当然每个都进入到列空间——矩阵没有其他作用的。在图中我零行和列空间的大小相等,都等于维数 r

6、从行空间到列空间,A是可逆的。列空间中的每个 b 都来自行空间中的xr

证明:列空间中的每个 b 是列Ax 的一个组合。事实上, b Axr,其中 xr 在行空间中,因为零空间的元素得到 Axn=0 。如果行空间的另一个元素 xr 得出 Axr=b ,那么 A(xrxr)=bb=0 。 这样的话 xrxr 既在零空间又在行空间里,也就是自己和自己正交,因此只能是零。所以行空间中只要一个变量能变成 b

每个矩阵将它的行空间变到列空间。

r维空间上, A 是可逆的,A的零空间为零。当 A 是对角矩阵时,我们将会看到有r个非零值的子矩阵是可逆的。

AT 方向相反,是从 Rm Rn ,也就是 C(A) C(AT) 。当然转置不是逆! AT 移动的是空间而不是向量,这个操作需要 A1 来完成,当然前提是逆存在,也就是 r=m=n 。我们这里不探讨 A1 将零向量变成整个零空间的操作。

A1 不存在时,最好的替换是伪逆 A+ 。这就使 A 可逆了:A+Ax=x,其中 x 位于行空间。而对于左零空间,什么都不需要做:A+y=0 A+ 的一种形式依赖于奇异值分解,为此我们需要知道特征值,后面会详细介绍。

  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值