正交子空间
前面我们已经知道了,两个向量的内积为0是勾股定理的另一种表现形式。现在我们来研究一下两个子空间之间的正交。虽然,我很不喜欢一上来就先给个定义,但我这里还是要给,sorry!
现有两个子空间V和W,如果V中的任何一个向量v和W中的任何一个向量w都正交,则子空间V正交于子空间W。
如果说线性代数基本定理的上半部分,告诉了我们A的列空间C(A)与A的行空间C()的维数都是r(they are drawn the same size), 剩下的两个零空间,A的零空间和A的左零空间的维度则分别是n-r和m-r。那么线性代数基本定理的下半部分则告诉我们,这四个基本子空间是两两正交的,且互为正交补