线性代数 --- 线性代数基本定理下(四个基本子空间他们两两正交,且互为正交补)

这篇博客详细介绍了线性代数中正交子空间的概念,包括两个子空间正交的定义,以及如何证明矩阵的零空间与行空间、列空间与左零空间的正交性。进一步阐述了正交补的性质,指出在中,零空间与行空间、列空间与左零空间互为正交补。线性代数基本定理的下半部分表明这些子空间不仅正交,而且它们的维数之和等于矩阵的行数或列数,这为解决线性方程组提供了新的视角。
摘要由CSDN通过智能技术生成

正交子空间

        前面我们已经知道了,两个向量的内积为0是勾股定理的另一种表现形式。现在我们来研究一下两个子空间之间的正交。虽然,我很不喜欢一上来就先给个定义,但我这里还是要给,sorry!

        现有两个子空间V和W,如果V中的任何一个向量v和W中的任何一个向量w都正交,则子空间V正交于子空间W。

        如果说线性代数基本定理的上半部分,告诉了我们A的列空间C(A)与A的行空间C(A^{T})的维数都是r(they are drawn the same size), 剩下的两个零空间,A的零空间和A的左零空间的维度则分别是n-r和m-r。那么线性代数基本定理的下半部分则告诉我们,这四个基本子空间是两两正交的,且互为正交补

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>