线性代数学习笔记5-1:正交的向量/空间、正交补(行空间和零空间正交)

本文介绍了向量正交的概念,即两个向量的点积为零,以及在几何上的直观理解。进一步阐述了空间正交的定义,指出两个空间正交意味着它们的交集不含非零向量。特别提到了线性代数中矩阵的零空间和行空间正交,以及它们作为正交补的性质。文章强调了正交性和维数的关系,并概述了学习线性代数的逻辑路径,从向量空间到正交性再到基。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量的正交

向量 x \boldsymbol x x和向量 y \boldsymbol y y正交的定义:

  • 就是说它们的点积 / 内积为零: x ⋅ y = 0 \boldsymbol x\cdot\boldsymbol y=0 xy=0
  • 也可以统一表示为向量乘法: x T y = 0 \boldsymbol x^T\boldsymbol y=0 xTy=0

向量的正交,可简单理解为两个向量在几何上垂直

  • 零向量与所有向量都正交

空间的正交

两个空间 U \mathbf U U V \mathbf V V正交的定义:空间 U \mathbf U U中的任意向量 u \boldsymbol u u与空间 V \mathbf V V中的任意向量 v \boldsymbol v v正交

注意,这里不能再理解为几何图形上的垂直
例如地面和墙面这两个平面,一定不是正交的,因为它们交界处的向量,同时属于两个空间,但点积肯定不为0
可见,两个空间 U \mathbf U U V \mathbf V V正交 ⇒ \Rightarrow 交集 U ∩ V \mathbf U\cap\mathbf V UV不含非零向量

行空间和零空间正交(互为正交补)

空间正交的例子是,方程 A x = 0 \mathbf A \boldsymbol x=\boldsymbol 0 Ax=0,系数矩阵 A \mathbf A A的零空间和行空间正交
在这里插入图片描述
实际上, A \mathbf A A的行空间和零空间正交; A \mathbf A A的列空间和左零空间正交

  • 并且,它们两两互为正交补 / 正交补集(Orthogonal Complement)
  • 例如行空间是零空间的正交补,即 C ( A T ) = ( N ( A ) ) ⊥ C(\mathbf A^T)=(N(\mathbf A))^\perp C(AT)=(N(A)),这意味着,行空间含有所有与零空间正交的向量
  • ”是指两个空间互不包含/交集为0,且两个子空间的并集构成了整个 R n \mathbf R^n Rn空间,两个子空间的维数 之和 为整个空间的维数 n n n
    行空间和零空间 R n \mathbf R^n Rn空间中的正交补,这意味着这两个正交子空间的维数之和必为 n n n,即 R a n k ( C ( A T ) ) + R a n k ( N ( A ) ) = r + ( n − r ) = n Rank(C(\mathbf A^T))+Rank(N(\mathbf A))=r+(n-r)=n Rank(C(AT))+Rank(N(A))=r+(nr)=n

对于三维空间,正交补直观的例子就是: X o Y XoY XoY平面和它的法向量,互为正交补

整个线性代数的学习逻辑:首先研究向量空间及其维数,然后研究正交性,最后研究(也就是所谓的“正交基”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值