Adaptive Sliding Window for Hierarchical Pose-Graph-Based SLAM 阅读

1. 介绍

在FrameSLAM中,骨架框架用于有效地识别先前访问过的区域。由于采用固定尺寸滑动窗口(FSW)对局部配准进行增量束平差,因此该框架也存在信息丢失和线性化误差问题。HMT SLAM使用基于RBPF的层次结构来局部解决SLAM问题,首次提出用于图像分割的算法使用了标准化切割(Ncut)算法建立高度独立的局部地图。为了生成切割的权重矩阵,使用感知空间重叠(SSO)来测量机器人姿势之间的相关性。
为了在保持SW(Sliding Window)和层次结构优点的同时,在不增加前端信息的情况下解决信息丢失和线性化误差问题,提出了一种高效的层次PGB(Pose-Graph-Based)-SLAM算法ASW(Adaptive Sliding Window)。通过调整滑动窗口大小,我们的方法根据环境提供了一个合适的窗口大小。
主要创新:
1) 提高了定位精度,降低了计算复杂度。
2) 实现了一种高效的层次化地图结构。

2. 固定尺寸滑动窗口(FSW)

在固定尺寸滑动窗口中存在两个问题:
1) 信息丢失 在SW中添加新节点时,前端将创建约束。约束在新节点和匹配的现有节点之间具有空间关系。因此,当FSW移动到最新节点时,连接到被移除节点的约束的信息丢失不可避免。使用FSW作为基于图的SLAM优化器会出现信息丢失问题。造成信息丢失问题的原因主要有两个。第一个原因是窗户的尺寸不合适。如果SW大小不适合覆盖环路闭合约束,SLAM会遭受信息丢失问题(图1a)。第二个原因是SW的简单滑动运动。尽管SW大小被适当地确定以覆盖环路闭合约束,但是当SW移动时不可避免地发生信息丢失(图1b)。在这种情况下,相邻节点之间的约束以及循环关闭约束将被移除。
在这里插入图片描述
2) 计算复杂性的敏感性 计算复杂度对SW大小变化敏感。如果SW规模小,则计算复杂度降低,但如果SW规模大,则计算复杂度增加。

3. 自适应滑动窗口(ASW)

算法步骤
1) 当从前端给出新节点和与新节点相关的约束时,SW大小增加。
2) 通过寻找方程的最优解来修正SW中的节点。当软件达到某一阈值时,软件大小被调整以最小化信息丢失。如果SW未达到阈值,则在添加新节点和约束的同时增大SW大小。
3) 但是,如果软件在很长时间后达到阈值或阈值不存在,则软件大小继续增大。因此,如果超过了预先定义的大小,则通过删除与其他节点具有多个重叠度量的节点来剪除SW中彼此具有高度相似性的节点。
4) 最后,通过固定软件中被截断的部分来创建本地映射。
在这里插入图片描述
方法
ASW方法有五个主要部分:
1)生成权重矩阵
使用感测空间重叠(SSO)函数来分配权重。在PGB-SLAM中,通常从前端到后端给出约束条件,用于轨迹优化,因此,SSO可能成为不必要的附加信息。在文中的方法,不需要从前端获得额外的信息,只是使用约束的信息矩阵来获得权重。
2)阈值以准备自适应
求解方程选择SW的阈值。每当节点被添加到SW时,检查方程的第二最小特征值,并且SW大小被增大(如下图)。如果权重很弱或相异程度很小,则第二个最小特征值小于预定义值。
在这里插入图片描述
3)分离或增加SW
SW中的节点通过使用在前面提到的阈值条件下获得的特征向量的符号来分离。两个分开的部分没有权重,与最新机器人节点无关的节点从SW中移除(如下图)。
在这里插入图片描述
4)重新排列节点索引
当下一个窗口中的节点之间出现不连续索引时,需要在单独的步骤中重新排列(如上图)。因此,执行索引的重新排列以移除不连续索引。在阈值之后,下一SW成为当前窗口(如下图),然后,窗口大小继续增大,直到满足下一阈值为止。
在这里插入图片描述
5)生成局部映射
从分离步骤将截断的节点固定到局部映射上,构造一个有效的全局调整层次结构。通过边缘化其他节点,得到固定局部地图的原点节点与下一个滑动窗口部分之间的信息矩阵。然后,将固定的局部地图信息传输到前端,有效地与旧的局部地图进行匹配。
在这里插入图片描述

4. FSW与ASW对比

1) 均方根误差
在这里插入图片描述
2)绝对航向角度
在这里插入图片描述
3) 计算复杂度
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值