1. 引言
提出了一种基于快速互信息(MI)计算的概率方法作为特征去除的基础。MI值作为一个信标,用于选择不同的特性,同时消除冗余特性,从而提高系统的总体速度并减少存储需求。设计该方案的主要目的是合理地减少用于位姿估计的特征数目,降低系统的计算复杂度。根据信息论,互信息是衡量一个随机变量包含另一个随机变量信息的程度。
异常剔除是去除伪匹配和噪声数据,提高运动估计精度的重要步骤之一。运动模糊、遮挡、视点变化、不匹配和变化的照明是导致异常值的一些因素。由Fischler和Bolles提出的随机抽样一致性(RANSAC)方案是一种常用的方案。它随机抽样给定的数据,并找到由最大点数支持的假设。文献中提出了几种RANSAC的变体,如GroupSAC、Pre-emptive RANSAC、MSAC等。
基于特征的姿态估计可分为3D-to-3D、3D-2D和2D-2D框架。本文以三维到二维的姿态估计框架为研究对象,进行了实验研究。在3Dto-2D方法中,将前一帧的3D点投影到当前帧上,用公式定义的代价函数最小化,得到R和t。最小化问题可以用线性技术,如直接线性变换(DLT)或非线性技术,透视n点(PnP)来解决。
有两大类特征选择技术,基于搜索和基于相关性。基于搜索的技术旨在生成、评估、比较子集与以前的最佳子集,并重复该子集直到满足停止条件。这些基于搜索的技术可以是独立分析特征,也可以是需要学习或两者结合的包装器。相反,基于相关性的技术旨在寻找非冗余特征的子集,并且比基于搜索的方法更有效。一些基于相关性的特征选择方案有mRMR、使用最大信息压缩指数的无监督选择、MA-Hall在类内最大化相关性的同时最小化与其他特征的相关性等。
2. 方法
在帧内(左、右帧)和帧间匹配(前一帧和当前帧)之前对特征进行特征选择,得到所选的特征指标。互信息提供了两个随机变量之间的统计依赖程度,并在给定集合内的每两个特征组合之间计算。将一个特征的MI值与所有其他特征相加得到一个数值,该数值用于对照阈值进行选择检查。两个连续随机变量之间的MI值可以用公式计算:
X和Y是两组连续随机变量,即前后两帧,x和y是这两组中的单个随机变量,,换句话说就是左右相机匹配的特征点,f(x)和f(y)是边际概率密度,换句话说就是这个点在所有点中的边缘概率,f(X,Y)分别是X和Y之间的联合概率密度。高斯核估计用于获得联合概率分布和边际概率分布,模型如下:
参数h是控制MI值的数据的标准偏差。M是用于估计互信息的数据点的数目。在使用SURF特征的VO中,选择了0.15的值作为实验值,为使用ORB特征的ProSLAM选择了20的值。通过将联合概率密度近似为期望值,可以根据上述方程计算出MI的最终方程,如下所示:
本文采用互信息成对计算的方法,计算左图像匹配后的特征的MI矩阵。对于ORB特征,在计算MI矩阵之前,将特征的二进制值转换为浮点型。由于这种冗余消除与模型拟合无关,所以即使在特征选择之后,异常点检测子程序也保持不变。