PBRT里的相机系统

PBRT中,他定义的NDC坐标系和我们图形学里的不一样。

图形学中NDC是[-1, 1]³;

而PBRT中的NDC如下图:

正交投影

摄像机当前的坐标是原点坐标,正交投影的width和height暂时未知。

这里可以平移-n把n移到原点。

O_t = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & -n\\ 0 & 0 & 0 & 1 \end{bmatrix}

缩放矩阵:

O_s = \begin{bmatrix} 1 & 0 &0 &0 \\ 0 & 1 & 0 & 0\\ 0 & 0 & 1/(f-n) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

因此正交投影矩阵是:

O=O_s \times O_t = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1/(f - n) & n/(n-f)\\ 0 & 0 & 0 & 1 \end{bmatrix}

由于在pbrt中的NDC,左上角是(0, 0, 0),右下角是(1, 1, 0)。

所以y的缩放要取负数。

而且pbrt把正交投影的l r t b的操作放到了ScreenToRaster的矩阵里。

他定义了一个ScreenWindow来代替l r t b。

既然我们要把ScreenWindow的左下角作为原点

那么把左上角平移到原点,再经过scale变换后得到最后的NDC:

那么定义如下矩阵:

M_{t} = \begin{bmatrix} 1 & 0 & 0 & -pMin.x\\ 0 & 1 & 0 & -pMax.y\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}            M_s = \begin{bmatrix} 1/(pMax.x-pMin.x)) & 0 & 0 & 0\\ 0 & -1/(pMax.y-pMin.y) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

最后的再把矩阵放大到Raster的大小:

M_{scale\_resolution} = \begin{bmatrix} resolution.x & 0 & 0 & 0\\ 0 & resolution.y &0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

那矩阵ScreenToRaster就是上面矩阵乘法结果:

M_{screen\rightarrow raster} = M_{scale\_resolution} \times M_s \times M_t

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值