针对非完备数据的可信机器学习 专题预告 | 香港浸会大学可信机器学习和推理课题组专场【Global AI Lab】...

本文介绍了香港浸会大学TMLR组的一场在线直播活动,包括五位专家的演讲主题,如分布外数据检测、对抗数据识别和模型鲁棒性增强等,涵盖了可信机器学习的重要研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击蓝字

a0872a5ae7a73454ff3f97b0174d5971.jpeg

关注我们

AI TIME欢迎每一位AI爱好者的加入!

070b237aa00d2bb7b9066079077ae800.jpeg

哔哩哔哩直播通道

扫码关注AITIME哔哩哔哩官方账号预约直播

4eee9fc1add0581ec31baddf9d87c2cf.gif

北京时间 11月14日

14:00—14:30

王 启 舟

Learning to Augment Distributions for Out-of-distribution Detection

14:30—15:00

张 书 海

Detecting Adversarial Data by Probing Multiple 

Perturbations Using Expected Perturbation Score

15:00—15:30

江 雪

Detecting Out-of-distribution Data through 

In-distribution Class Prior

15:30—16:00

朱 嘉 宁

Combating Exacerbated Heterogeneity for 

Robust Models in Federated Learning

16:00—16:30

陈 永 强

Understanding and Improving Feature Learning for Out-of-Distribution Generalization

16:30—17:00

周 展 科

On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation

嘉宾介绍

0ad0818d0d5493e180d7632df58fec80.jpeg

王 启 舟

香港浸会大学三年级博士生,TMLR组博士生。他的研究方向为可信机器学习,相关研究工作发表在NeurIPS、ICLR、PAMI等会议及期刊上,同时担任NeurIPS、ICML、ICLR等会议和期刊的审稿人。个人主页:https://qizhouwang.github.io/homepage/                     

789277f6206c6074e939a4abd761ec51.jpeg

张 书 海

华南理工大学软件学院二年级博士生,师从谭明奎教授,TMLR组访问博士生。研究领域为可信机器学习,主要包括对抗防御、对抗检测、机器生成文本检测等。研究工作发表于ICML/ICCV等国际顶级会议和 IEEE TCSVT/Neural Networks等国际期刊。                   

45052bd0ce2fce029a052592d3e58030.jpeg

江 雪

南方科技大学&香港浸会大学二年级联培博士生,师从郑锋教授, TMLR组联培博士生。他的研究方向为分布外检测,相关研究工作发表在 ICML 等会议和期刊上,同时担任NeurIPS、ICML、ICLR等会议和期刊的审稿人。                   

6b8ea452821470ef60cf2737c073739e.png

朱 嘉 宁

香港浸会大学三年级博士生,TMLR组博士生。他的研究方向为可信机器学习,相关研究工作发表在NeurIPS, ICML, ICLR等会议及期刊上,同时担任NeurIPS、ICML、ICLR等会议和期刊的审稿人。个人主页:https://zfancy.github.io/

f247914f8bf08334ca577b682edea182.jpeg

陈永强

香港中文大学四年级博士生,师从James Cheng教授, TMLR组访问博士生。他的研究方向为分布外泛化、图神经网络以及因果推断,相关研究工作发表在 NeurIPS、ICLR 等会议和期刊上,同时担任NeurIPS、ICML、ICLR等会议和期刊的审稿人以及Session Chair。个人主页:https://lfhase.win/

88dd8290a7ecb401309388e1b912e6e7.jpeg

周 展 科

香港浸会大学二年级博士生,TMLR组博士生。他的研究方向为可信机器推理和图学习,相关研究工作发表在NeurIPS, ICML等会议及期刊上,同时担NeurIPS、ICML、ICLR等会议和期刊的审稿人。个人Github主页:https://github.com/AndrewZhou924

课题组介绍

香港浸会大学可信机器学习和推理课题组 (TMLR Group) 由多名青年教授、博士后研究员、博士生、访问博士生和研究助理共同组成,课题组隶属于理学院计算机系。课题组专攻可信表征学习、基于因果推理的可信学习、可信基础模型等相关的算法,理论和系统设计以及在自然科学上的应用,具体研究方向和相关成果详见本组Github (https://github.com/tmlr-group)。课题组由政府科研基金以及工业界科研基金资助,如香港研究资助局杰出青年学者计划,国家自然科学基金面上项目和青年项目,以及微软、英伟达、百度、阿里、腾讯等企业的科研基金。青年教授和资深研究员手把手带,GPU计算资源充足,长期招收多名博士后研究员、博士生、研究助理和研究实习生。此外,本组也欢迎自费的访问博士后研究员、博士生和研究助理申请,访问至少3-6个月,支持远程访问。有兴趣的同学请发送个人简历和初步研究计划到邮箱 (bhanml@comp.hkbu.edu.hk)。

添加“AI TIME小助手(微信号:AITIME_HY)”,回复“ML”,将拉您进“AI TIME TMLR 交流群”!

AI TIME微信小助手

eed4b23be60f8d91508eb57e1024e572.jpeg

往期精彩文章推荐

b5fb879945b2cf2777ebca49ad58595b.jpeg

关注我们 记得星标

 关于AI TIME 

AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。

迄今为止,AI TIME已经邀请了1400多位海内外讲者,举办了逾600场活动,超600万人次观看。

c44f754edcc6700ab742205d9a6585c5.png

我知道你

在看

~

79819369538f1f0bea635a66cc21e6bc.gif

点击 阅读原文 预约直播!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值