实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet, 然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。
转移学习的两个主要场景:
- 微调Convnet:使用预训练的网络(如在imagenet 1000上训练而来的网络)来初始化自己的网络,而不是随机初始化。其他的训练步骤不变。
- 将Convnet看成固定的特征提取器:首先固定ConvNet除了最后的全连接层外的其他所有层。最后的全连接层被替换成一个新的随机 初始化的层,只有这个新的层会被训练[只有这层参数会在反向传播时更新]
下面是利用PyTorch进行迁移学习步骤,要解决的问题是训练一个模型来对蚂蚁和蜜蜂进行分类。
1.导入相关的包
# License: BSD # Author: Sasank Chilamkurthy from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy plt.ion() # interactive mode
2.加载数据
今天要解决的问题是训练一个模型来分类蚂蚁ants和蜜蜂bees。ants和bees各有约120张训练图片。每个类有75张验证图片。从零开始在 如此小的数据集上进行训练通常是很难泛化的。由于我们使用迁移学习,模型的泛化能力会相当好。 该数据集是imagenet的一个非常小的子集。从此处下载数据,并将其解压缩到当前目录。
#训练集数据扩充和归一化 #在验证集上仅需要归一化 data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), #随机裁剪一个area然后再resize transforms.RandomHorizontalFlip(), #随机水平翻转 transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'data/hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
3.可视化部分图像数据
可视化部分训练图像,以便了解数据扩充。
def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated # 获取一批训练数据 inputs, classes = next(iter(dataloaders['train'])) # 批量制作网格 out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes])
4.训练模型
编写一个通用函数来训练模型。下面将说明:
- 调整学习速率
- 保存最好的模型
下面的参数scheduler是一个来自 torch.optim.lr_scheduler的学习速率调整类的对象(LR scheduler object)。
def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # 每个epoch都有一个训练和验证阶段 for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # 迭代数据. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # 零参数梯度 optimizer.zero_grad() # 前向 # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # 后向+仅在训练阶段进行优化 if phase == 'train': loss.backward() optimizer.step() # 统计 running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # 深度复制mo if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # 加载最佳模型权重 model.load_state_dict(best_model_wts) return model
5.可视化模型的预测结果
#一个通用的展示少量预测图片的函数 def visualize_model(model, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training)
6.场景1:微调ConvNet
加载预训练模型并重置最终完全连接的图层。
model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # 观察所有参数都正在优化 optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # 每7个epochs衰减LR通过设置gamma=0.1 exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
训练和评估模型
(1)训练模型 该过程在CPU上需要大约15-25分钟,但是在GPU上,它只需不到一分钟。
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25) Epoch 0/24 ---------- train Loss: 0.7032 Acc: 0.6025 val Loss: 0.1698 Acc: 0.9412 Epoch 1/24 ---------- train Loss: 0.6411 Acc: 0.7787 val Loss: 0.1981 Acc: 0.9281 · · · Epoch 24/24 ---------- train Loss: 0.2812 Acc: 0.8730 val Loss: 0.2647 Acc: 0.9150 Training complete in 1m 7s Best val Acc: 0.941176
(2)模型评估效果可视化
visualize_model(model_ft)
7.场景2:ConvNet作为固定特征提取器
在这里需要冻结除最后一层之外的所有网络。通过设置requires_grad == Falsebackward()来冻结参数,这样在反向传播backward()的时候他们的梯度就不会被计算。
model_conv = torchvision.models.resnet18(pretrained=True) for param in model_conv.parameters(): param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as # opposed to before. optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
训练和评估
(1)训练模型 在CPU上,与前一个场景相比,这将花费大约一半的时间,因为不需要为大多数网络计算梯度。但需要计算转发。
model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25)
- 输出
Epoch 0/24 ---------- train Loss: 0.6400 Acc: 0.6434 val Loss: 0.2539 Acc: 0.9085 · · · Epoch 23/24 ---------- train Loss: 0.2988 Acc: 0.8607 val Loss: 0.2151 Acc: 0.9412 Epoch 24/24 ---------- train Loss: 0.3519 Acc: 0.8484 val Loss: 0.2045 Acc: 0.9412 Training complete in 0m 35s Best val Acc: 0.954248 (2)模型评估效果可视化 visualize_model(model_conv) plt.ioff() plt.show()
2020未来杯AI挑战赛-图像赛道-语音赛道同时开启,30万大奖等你来挑战!