树莓派3b | Raspberry Pi OS系统 | 安装conda环境、pytorch及opencv

1、安装miniforge3

    说明:本来想安装miniconda3的,但是经过一翻折腾,发现conda环境中的pytorch一直认不到,因此放弃miniconda3,改用miniforge2!

a.查看系统信息
uname -a 

    结果入下图,这种小开放板大部分时ARM版的,因此系统一般需要下载Linux-aarch64版本。

b.下载miniforge3

到miniforge官方github上下载,下载适合自己树莓派版本的miniforge3。GitHub最好先进入GitHub首页在搜conda-forge,然后进入下载页面,或者用复制网址进去,如果用超级链接进去,经常会打不开网址。

官方下载地址:https://github.com/conda-forge/miniforge (去了超级链接)

c.上传安装包到树莓派上

用FileZilla上传下载的文件Miniforge3-Linux-aarch64.sh至树莓派上。可以在FileZilla页面采用快速链接登录,传输采用SFTP协议方式。如果用“文件”>>“站点管理”页面,新建站点时,需注意,协议要选SFTP,如下图:

d.安装miniforge3

    切换到安装包上传的目录,然后根据指示安装

sudo bash Miniforge3-Linux-aarch64.sh

按ENTER继续 >>> 然后下一步[--more--]时按Q键跳过>>>>然后yes同意协议>>>>到安装目录选择时,默认安装root目录下,最好更换至/home/(用户名)/miniforge3下,方面后面配置,下图。

等待安装。。。(漫长),到问是否启用conda init时,选yes。

e.配置环境及更新环境变量
sudo nano ~/.bashrc
  • 在末尾加入 export PATH=“/home/lh/miniforge3/bin”:$PATH(记得引号是英文的,正确修改时,引号内的字符串会变色),如下图:

source ~/.bashrc  # 更新当前用户的环境变量 

这时输入conda,如无提示:“-bash: conda: command not found”就是安装完成了。

2、安装pytorch

a.激活及创建虚拟环境
source activate    #激活虚拟环境,如无激活conda命令无法使用,
conda env list     # 查看环境,默认只有base
conda create -n py39 python=3.9 #创建py39环境,指定python为3.9,不指定跟随系统

    创建conda环境时会要点时间,不要走开,中间还行输入yes同意协议。

b.激活需要安装pytorch的环境
conda activate py39  #激活环境py39

    注意:创建完conda环境后,要记得激活,不然后面pytorch就安装到默认的base环境里了。

c.安装pytorch

几次操作发现,常用得conda安装方式可能不是很好用

#pytorch官方的安装命令
conda install pytorch torchvision torchaudio cpuonly -c pytorch

# 清华源的pip安装命令
pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

#这两安装方式,可能会提示错误,或者非常慢

最后从anaconda官网上进行搜索安装,发现速度快了许多,具体如下:

i.进入官网: https://anaconda.org/  ,然后搜索要安装的包

ii.选择要安装的包(貌似Platforms里不同系统版本的pytorch都直接可以安装,树莓派时aarch64,但是选其它版本安装页没问题,最后安装了排名第1的那个版本了)

拷贝下面命令,进行安装。(过程有点长。。。)

安装完成后进入python测试一下是否安装成功,代码:

# 进入python,输入如下命令进行测试
import torch
print(torch.__version__)

3、安装opencv

同样用清华镜像源进行安装,如果安装出错可以用anaconda官网进行搜索安装(慢)

#清华镜像源安装命令 (之前会出错,后面有试过,速度还挺快的)
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

同样进入python,输入import cv2,如果可以使用证明安装成功!

参考来源:

树莓派学习(三):安装pytorch并验证_树莓派安装pytorch_luohao318的博客-CSDN博客树莓派学习(四)——安装opencv并验证_opencv 如何验证_luohao318的博客-CSDN博客

### 如何在树莓派安装和配置MediaPipe #### 准备工作 为了成功安装 MediaPipe,在树莓派上的准备工作至关重要。确保所使用的硬件为 Raspberry Pi 4B,并且操作系统应为 Raspberry Pi OS Bullseye 的64位版本[^3]。 确认当前系统的位数可以通过终端执行 `getconf LONG_BIT` 命令来完成。如果返回的结果不是64,则需要重新刷写适合的64位系统镜像到SD卡中。 #### 安装依赖项 在开始之前,更新现有的包列表并升级已安装的软件包至最新版本: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` 接着安装必要的构建工具和其他依赖库: ```bash sudo apt-get install build-essential cmake pkg-config libatlas-base-dev -y ``` #### 创建Python环境 建议创建一个新的 Python 虚拟环境来进行开发,这有助于管理项目所需的特定版本的库文件而不影响全局设置。这里推荐使用 Miniconda 或者 venv 工具来建立隔离的工作空间[^4]。 通过 Miniconda 方式为例展示如下操作过程: 1. 下载 Miniconda 安装脚本: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh ``` 2. 执行该 Shell 文件以启动安装向导: ```bash bash Miniconda3-latest-Linux-aarch64.sh ``` 按照提示完成安装流程后重启终端使更改生效。 激活新创建的 conda 环境前先初始化它以便每次打开新的 shell 都能自动加载路径变量: ```bash conda init bash source ~/.bashrc ``` 现在可以创建一个专门用于运行 MediaPipe 应用程序的新环境了: ```bash conda create --name mediapipe-env python=3.9 conda activate mediapipe-env ``` #### 安装MediaPipe及相关组件 进入刚才激活好的 Conda 环境之后就可以继续下一步骤——安装 MediaPipe 及其依赖关系了。考虑到性能优化方面的需求,通常还会一同安装 TensorFlow Lite 和 OpenCV 这两个重要的第三方模块。 ```bash pip install mediapipe opencv-python-headless tflite-runtime ``` 对于希望进一步扩展功能的应用开发者来说,还可以考虑加入 PyTorch 支持,不过需要注意的是由于资源限制的原因,在 ARM 架构下的树莓派上编译完整的 PyTorch 版本可能会遇到困难,因此可以选择轻量级实现方式如 TorchScript 或 ONNX Runtime 来替代。 最后验证一切正常工作的简单测试就是尝试导入刚刚安装完毕的各种库而不出错: ```python import cv2 import mediapipe as mp print("MediaPipe and dependencies installed successfully!") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值