5.集成学习

集成学习

集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。
Bagging:互相遏制变壮
从原始样本集中使用Bootstraping 方法随机抽取n个训练样本,共进行k轮抽取,得到k个训练集(k个训练集之间相互独立,元素可以有重复)。
对于n个训练集,我们训练k个模型,(可以是决策树,knn等)
对于分类问题:由投票表决产生的分类结果;对于回归问题,由k个模型预测结果的均值作为最后预测的结果(所有模型的重要性相同)。
Boosting:弱弱组合变强
对于训练集中的每个样本建立权值wi,表示对每个样本的权重, 其关键在与对于被错误分类的样本权重会在下一轮的分类中获得更大的权重(错误分类的样本的权重增加)。
同时加大分类 误差概率小的弱分类器的权值,使其在表决中起到更大的作用,减小分类误差率较大弱分类器的权值,使其在表决中起到较小的作用。每一次迭代都得到一个弱分类器,需要使用某种策略将其组合,为最终模型,(adaboost给每个迭代之后的弱分类器一个权值,将其线性组合作为最终的分类器,误差小的分类器权值越大。)

Bagging 和 Boosting的主要区别
样本选择上:Bagging采取Bootstraping的是随机有放回的取样,Boosting的每一轮训练的样本是固定的,改变的是每个样本的权重。
样本权重上:Bagging采取的是均匀取样,且每个样本的权重相同,Boosting根据错误率调整样本权重,错误率越大的样本权重会变大
预测函数上:Bagging所有的预测函数权值相同,Boosting中误差越小的预测函数其权值越大。
并行计算: Bagging 的各个预测函数可以并行生成;Boosting的各个预测函数必须按照顺序迭代生成.

随机森林:随机森林=Bagging+决策树,是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
随机森林构造过程中的关键步骤(用N来表示训练样本的个数,M表示特征数目):
​ 1)一次随机选出一个样本,有放回的抽样,重复N次(有可能出现重复的样本)
​ 2) 随机去选出m个特征, m <<M,建立决策树
注意:
1)如果不随机抽样,每棵树的训练集是一样的,最终训练的树分类结果也是一样的;
2)如果不是有放回抽样,则每棵树的训练样本都不同,是没有交集的,也就是说每棵树训练出来都是有很大的差异的;而随机森 林最后分类取决于多棵树(弱分类器)的投票表决。

随机森林api

sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)
n_estimators:integer,optional(default = 10)森林里的树木数量
Criterion:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=None)树的最大深度
max_features="auto”,每个决策树的最大特征数量
If “auto”, then max_features=sqrt(n_features).
If “sqrt”, then max_features=sqrt(n_features)(same as “auto”).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
min_samples_split:节点划分最少样本数
min_samples_leaf:叶子节点的最小样本数
超参数:n_estimator, max_depth, min_samples_split,min_samples_leaf
示例—泰坦尼克号幸存人员预测

import pandas as pd
import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.feature_extraction import DictVectorizer
from sklearn.ensemble import RandomForestClassifier


# 获取数据
train_data = pd.read_csv('./titanic/train.csv')
x_train, y_train = train_data[['Pclass', 'Age', 'Sex']], train_data[['Survived']]
print(x_train.head())
print(y_train.head())
x_test = pd.read_csv('./titanic/test.csv')[['Pclass', 'Age', 'Sex']]
y_test = pd.read_csv('./titanic/gender_submission.csv')[['Survived']]
print(x_test.head())
print(y_test.head())

# 缺失值需要处理,将特征当中有类别的这些特征进行字典特征抽取
x_train['Age'].fillna(x_train['Age'].mean(), inplace=True)
x_test['Age'].fillna(x_test['Age'].mean(), inplace=True)

# 字典特征抽取,特征中出现类别符号,需要进行one-hot编码处理
# x.to_dict(orient="records")将数组特征转换为字典数据
transfer = DictVectorizer(sparse=False)

x_train = transfer.fit_transform(x_train.to_dict(orient="records"))
x_test = transfer.fit_transform(x_test.to_dict(orient="records"))

# 随机森林
estimator = RandomForestClassifier()
param_grid = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=5)
estimator.fit(x_train, y_train.values.ravel())


# 模型评估
y_pre = estimator.predict(x_test)
print(y_pre)

# 准确率
ret1 = estimator.score(x_train, y_train)
ret = estimator.score(x_test, y_test)
print(ret1, ret)

print('最好的参数:', estimator.best_estimator_)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值