6.聚类(K-means)+ 降维(Pca)

聚类算法:

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。
在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。

K-means
​ K : 初始中心点个数(计划聚类数)
​ means:求中心点到其他数据点距离的平均值
步骤:
1、随机设置K个特征空间内的点作为初始的聚类中心
2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
4、如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程

K-means api
sklearn.cluster.KMeans(n_clusters=8)
参数:
n_clusters:开始的聚类中心数量
整型,缺省值=8,生成的聚类数,即产生的质心(centroids)数。
方法:
estimator.fit(x)
estimator.predict(x)
estimator.fit_predict(x)
计算聚类中心并预测每个样本属于哪个类别,相当于先调用fit(x),然后再调用predict(x)

示例:

import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score


# 创建数据集
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本4个特征,共4个簇,
# 簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
                  cluster_std=[0.4, 0.2, 0.2, 0.2],
                  random_state=9)

# 数据集可视化
plt.figure(1)
plt.scatter(X[:, 0], X[:, 1], marker='o')

# 使用kmeans进行聚类,并使用CH方法评估
y_pred = KMeans(n_clusters=5, random_state=9).fit_predict(X)
plt.figure(2)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
# 用Calinski-Harabasz Index评估的聚类分数
print(calinski_harabasz_score(X, y_pred))

k-means算法小结
优点:原理简单,容易实现;聚类效果中上(依赖K值的选择)
缺点:对离群点,噪声敏感;很难发现大小差别很大的簇;结果不一定全局最优,只能保证局部最优。

特征降维

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程。
1.特征选择
数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。
方法:
Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
方差选择法:低方差特征过滤
相关系数
Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)
决策树:信息熵、信息增益
正则化:L1、L2
深度学习:卷积等
1)低方差特征过滤:删除低方差的一些特征
特征方差小:某个特征大多样本的值比较相近
特征方差大:某个特征很多样本的值都有差别
api:
sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
删除所有低方差特征
Variance.fit_transform(X)
X:numpy array格式的数据[n_samples,n_features]
返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。

2)相关系数:
① 皮尔逊相关系数:
反映变量之间相关关系密切程度的统计指标
在这里插入图片描述
相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:
当r>0时,表示两变量正相关,r<0时,两变量为负相关
当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
一般可按三级划分:|r|<0.4为低度相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关
api:
from scipy.stats import pearsonr
x : (N,) array_like
y : (N,) array_like
Returns: (Pearson’s correlation coefficient, p-value)

② 斯皮尔曼相关系数
反映变量之间相关关系密切程度的统计指标
在这里插入图片描述
斯皮尔曼相关系数表明 X (自变量) 和 Y (因变量)的相关方向。 如果当X增加时, Y 趋向于增加, 斯皮尔曼相关系数则为正
与之前的皮尔逊相关系数大小性质一样,取值 [-1, 1]之间
api:
from scipy.stats import spearmanr

2.主成分分析
定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量
作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。
应用:回归分析或者聚类分析当中
api:
sklearn.decomposition.PCA(n_components=None)
将数据分解为较低维数空间
n_components:
小数:表示保留百分之多少的信息
整数:减少到多少特征
PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]
返回值:转换后指定维度的array
示例:

from sklearn.decomposition import PCA


def pca_demo():
    """
        对数据进行PCA降维
        :return: None
        """
    data = [[2, 8, 4, 5], [6, 3, 0, 8], [5, 4, 9, 1]]
    print(data)

    # 实例化PCA,保留90%信息
    transfer1 = PCA(n_components=0.9)
    data1 = transfer1.fit_transform(data)
    print("保留90%的信息,降维结果为:\n", data1)

    # 实例化PCA,指定降维数
    transfer2 = PCA(n_components=3)
    # 调用fit_transform
    data2 = transfer2.fit_transform(data)
    print("降维到3维的结果:\n", data2)


if __name__ == '__main__':
    pca_demo()
  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值