Keras:UserWarning: Update your `Conv2D` call to the Keras 2 API...

使用Keras时用到了卷积层Convolution2D( )以及Model.fit( ):

x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
Model.fit(x_train, x_train, nb_epoch=10, batch_size=256, shuffle=True, validation_data=(x_test, x_test))

遇到了如下错误:

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(1, (3, 3), padding="same", activation="sigmoid")`
  decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)
......

在查看了github上的Keras 2.0发行说明后,发现这是从Keras 1到Keras 2发生的变化.

此处涉及到的有:
Convolution* 层被重新命名 Conv* ;
border_mode - > padding ;
nb_epoch - > epochs;
kernel_size可以设置为一个整数,例如Conv2D(10, 3)相当于Conv2D(10, (3, 3));

因此,

x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
Model.fit(x_train, x_train, nb_epoch=10, batch_size=256, shuffle=True, validation_data=(x_test, x_test))

改为:

x = Conv2D(8, 3, activation='relu', padding='same')(x)
Model.fit(x_train, x_train, epochs=10, batch_size=256, shuffle=True, validation_data=(x_test, x_test))

其他更多变化参见:Keras 2.0发行说明

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值