python:panda

目录

第一章.预备知识

1、Python基础

1.列表推导式与条件赋值

2. 匿名函数与map方法

3. zip对象与enumerate方法

二、Numpy基础

1. np数组的构造

2. np数组的变形与合并

3. np数组的切片与索引

4. 常用函数

5. 广播机制

6. 向量与矩阵的计算

第二章.pandas基础

一、文件的读取和写入

1. 文件读取

2. 数据写入

二、基本数据结构

1. Series

2. DataFrame¶

三、常用基本函数

1. 汇总函数

2. 特征统计函数

3. 唯一值函数

4. 替换函数

5. 排序函数

6. apply方法

四、窗口对象

1. 滑窗对象

2. 扩张窗口

 第三章 索引

一、索引器

1. 表的列索引

2. 序列的行索引

3. loc索引器

4. iloc索引器

5. query方法

6. 随机抽样

二、多级索引¶

1. 多级索引及其表的结构

2. 多级索引中的loc索引器¶

3. IndexSlice对象¶

4. 多级索引的构造

三、索引的常用方法

1. 索引层的交换和删除

2. 索引属性的修改

3. 索引的设置与重置

4. 索引的变形

四、索引运算

1. 集合的运算法则

2. 一般的索引运算


第一章.预备知识

1、Python基础

1.列表推导式与条件赋值

L = []
def my_func(x):
    return 2*x
for i in range(5):
    L.append(my_func(i))
L
#[0, 2, 4, 6, 8]

列表表达式还支持多层嵌套,如下面的例子中第一个for为外层循环,第二个为内层循环: 

[m+'_'+n for m in ['a', 'b'] for n in ['c', 'd']]
#['a_c', 'a_d', 'b_c', 'b_d']

2. 匿名函数与map方法

my_func = lambda x: 2*x
my_func(3)
[(lambda x: 2*x)(i) for i in range(5)]

对于上述的这种列表推导式的匿名函数映射,Python中提供了map函数来完成,它返回的是一个map对象,需要通过list转为列表:

list(map(lambda x: 2*x, range(5)))

对于多个输入值的函数映射,可以通过追加迭代对象实现:

list(map(lambda x, y: str(x)+'_'+y, range(5), list('abcde')))

3. zip对象与enumerate方法

zip函数能够把多个可迭代对象打包成一个元组构成的可迭代对象,它返回了一个zip对象,通过tuplelist可以得到相应的打包结果:

L1, L2, L3 = list('abc'), list('def'), list('hij')
list(zip(L1, L2, L3))
#[('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j')]

tuple(zip(L1, L2, L3))
#(('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j'))

'''
往往会在循环迭代的时候使用到zip函数:
'''
for i, j, k in zip(L1, L2, L3):
     print(i, j, k)
#
a d h

b e i

c f j
'''
enumerate是一种特殊的打包,它可以在迭代时绑定迭代元素的遍历序号:
'''
L = list('abcd')
for index, value in enumerate(L):
     print(index, value)
#0 a

1 b

2 c

3 d

'''
用zip对象也能够简单地实现这个功能:

'''
for index, value in zip(range(len(L)), L):
     print(index, value)
#0 a

1 b

2 c

3 d

'''
当需要对两个列表建立字典映射时,可以利用zip对象:

'''
dict(zip(L1, L2))
#{'a': 'd', 'b': 'e', 'c': 'f'}

'''
既然有了压缩函数,那么Python也提供了*操作符和zip联合使用来进行解压操作:
'''
zipped = list(zip(L1, L2, L3))
zipped
#[('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j')]


list(zip(*zipped)) # 三个元组分别对应原来的列表
#[('a', 'b', 'c'), ('d', 'e', 'f'), ('h', 'i', 'j')]




二、Numpy基础

1. np数组的构造

...

2. np数组的变形与合并

【a】转置:T

np.zeros((2,3)).T
#array([[0., 0.],
,       [0., 0.],
,       [0., 0.]])

【b】合并操作:r_c_

对于二维数组而言,r_c_分别表示上下合并和左右合并

一维数组和二维数组进行合并时,应当把其视作列向量,在长度匹配的情况下只能够使用左右合并的c_操作

【c】维度变换:reshape

reshape能够帮助用户把原数组按照新的维度重新排列。在使用时有两种模式,分别为C模式和F模式,分别以逐行和逐列的顺序进行填充读取。

3. np数组的切片与索引

数组的切片模式支持使用slice类型的start:end:step切片,还可以直接传入列表指定某个维度的索引进行切片

此外,还可以利用np.ix_在对应的维度上使用布尔索引,但此时不能使用slice切片:

target[np.ix_([True, False, True], [True, False, True])]
#array([[0, 2],
,       [6, 8]])

4. 常用函数

【a】where

where是一种条件函数,可以指定满足条件与不满足条件位置对应的填充值:

a = np.array([-1,1,-1,0])
np.where(a>0, a, 5) # 对应位置为True时填充a对应元素,否则填充5
#array([5, 1, 5, 5])

【b】nonzeroargmaxargmin

这三个函数返回的都是索引,nonzero返回非零数的索引,argmaxargmin分别返回最大和最小数的索引:

a = np.array([-2,-5,0,1,3,-1])
np.nonzero(a)
#(array([0, 1, 3, 4, 5], dtype=int64),)
a.argmax()
#4
a.argmin()
#1

【c】anyall

any指当序列至少 存在一个 True或非零元素时返回True,否则返回False

all指当序列元素 全为 True或非零元素时返回True,否则返回False

a = np.array([0,1])
a.any()
#True
a.all()
#False

【d】cumprodcumsumdiff

cumprodcumsum分别表示累乘和累加函数,返回同长度的数组,diff表示和前一个元素做差,由于第一个元素为缺失值,因此在默认参数情况下,返回长度是原数组减1

【e】 统计函数

常用的统计函数包括max, min, mean, median, std, var, sum, quantile,其中分位数计算是全局方法,因此不能通过array.quantile的方法调用:

np.quantile(target, 0.5) # 0.5分位数

但是对于含有缺失值的数组,它们返回的结果也是缺失值,如果需要略过缺失值,必须使用nan*类型的函数,上述的几个统计函数都有对应的nan*函数。

最后,需要说明二维Numpy数组中统计函数的axis参数,它能够进行某一个维度下的统计特征计算,当axis=0时结果为列的统计指标,当axis=1时结果为行的统计指标

5. 广播机制

广播机制用于处理两个不同维度数组之间的操作,这里只讨论不超过两维的数组广播机制。

6. 向量与矩阵的计算

【a】向量内积:dot

【b】向量范数和矩阵范数:np.linalg.norm

在矩阵范数的计算中,最重要的是ord参数,可选值如下:

ordnorm for matricesnorm for vectors
NoneFrobenius norm2-norm
'fro'Frobenius norm/
'nuc'nuclear norm/
infmax(sum(abs(x), axis=1))max(abs(x))
-infmin(sum(abs(x), axis=1))min(abs(x))
0/sum(x != 0)
1max(sum(abs(x), axis=0))as below
-1min(sum(abs(x), axis=0))as below
22-norm (largest sing. value)as below
-2smallest singular valueas below
other/sum(abs(x)**ord)**(1./ord)

【c】矩阵乘法:@

[Am×pBp×n]ij=p∑k=1AikBkj

第二章.pandas基础

import numpy as np
import pandas as pd

请确认已经安装了xlrd, xlwt, openpyxl这三个包,其中xlrd版本不得高于2.0.0

一、文件的读取和写入

1. 文件读取

pandas可以读取的文件格式有很多,这里主要介绍读取csv, excel, txt文件。

df_csv = pd.read_csv('../data/my_csv.csv')
df_csv

col1col2col3col4col5
02a1.4apple2020/1/1
13b3.4banana2020/1/2
26c2.5orange2020/1/5
35d3.2lemon2020/1/7
df_txt = pd.read_table('../data/my_table.txt')
df_txt

col1col2col3col4
02a1.4apple 2020/1/1
13b3.4banana 2020/1/2
26c2.5orange 2020/1/5
35d3.2lemon 2020/1/7
df_excel = pd.read_excel('../data/my_excel.xlsx')
df_excel
col1col2col3col4col5
02a1.4apple2020/1/1
13b3.4banana2020/1/2
26c2.5orange2020/1/5
35d3.2lemon2020/1/7

 这里有一些常用的公共参数,header=None表示第一行不作为列名,index_col表示把某一列或几列作为索引,索引的内容将会在第三章进行详述,usecols表示读取列的集合,默认读取所有的列,parse_dates表示需要转化为时间的列,关于时间序列的有关内容将在第十章讲解,nrows表示读取的数据行数。上面这些参数在上述的三个函数里都可以使用。

pd.read_table('../data/my_table.txt', header=None)

pd.read_csv('../data/my_csv.csv', index_col=['col1', 'col2'])

pd.read_table('../data/my_table.txt', usecols=['col1', 'col2'])

pd.read_csv('../data/my_csv.csv', parse_dates=['col5'])

pd.read_excel('../data/my_excel.xlsx', nrows=2)

在读取txt文件时,经常遇到分隔符非空格的情况,read_table有一个分割参数sep,它使得用户可以自定义分割符号,进行txt数据的读取。例如,下面的读取的表以||||为分割:

pd.read_table('../data/my_table_special_sep.txt')

col1 |||| col2
0TS |||| This is an apple.
1GQ |||| My name is Bob.
2WT |||| Well done!
3PT |||| May I help you?

 上面的结果显然不是理想的,这时可以使用sep,同时需要指定引擎为python

pd.read_table('../data/my_table_special_sep.txt', sep=' \|\|\|\| ', engine='python')

col1col2
0TSThis is an apple.
1GQMy name is Bob.
2WTWell done!
3PTMay I help you?

【WARNING】sep是正则参数

在使用read_table的时候需要注意,参数sep中使用的是正则表达式,因此需要对|进行转义变成\|,否则无法读取到正确的结果。有关正则表达式的基本内容可以参考第八章或者其他相关资料。

2. 数据写入

一般在数据写入中,最常用的操作是把index设置为False,特别当索引没有特殊意义的时候,这样的行为能把索引在保存的时候去除。

df_csv.to_csv('../data/my_csv_saved.csv', index=False)
df_excel.to_excel('../data/my_excel_saved.xlsx', index=False)

pandas中没有定义to_table函数,但是to_csv可以保存为txt文件,并且允许自定义分隔符,常用制表符\t分割:

df_txt.to_csv('../data/my_txt_saved.txt', sep='\t', index=False)

如果想要把表格快速转换为markdownlatex语言,可以使用to_markdownto_latex函数,此处需要安装tabulate包。

二、基本数据结构

pandas中具有两种基本的数据存储结构,存储一维valuesSeries和存储二维valuesDataFrame,在这两种结构上定义了很多的属性和方法

1. Series

Series一般由四个部分组成,分别是序列的值data、索引index、存储类型dtype、序列的名字name。其中,索引也可以指定它的名字,默认为空。

s = pd.Series(data = [100, 'a', {'dic1':5}],
              index = pd.Index(['id1', 20, 'third'], name='my_idx'),
              dtype = 'object',
              name = 'my_name')
s
'''
my_idx
,id1              100
,20                 a
,third    {'dic1': 5}
,Name: my_name, dtype: object
'''

【NOTE】object类型

object代表了一种混合类型,正如上面的例子中存储了整数、字符串以及Python的字典数据结构。此外,目前pandas把纯字符串序列也默认认为是一种object类型的序列,但它也可以用string类型存储,文本序列的内容会在第八章中讨论。

对于这些属性,可以通过 . 的方式来获取:

 索引是pandas中最重要的概念之一,它将在第三章中被详细地讨论。如果想要取出单个索引对应的值,可以通过[index_item]可以取出

2. DataFrame

DataFrameSeries的基础上增加了列索引,一个数据框可以由二维的data与行列索引来构造:

data = [[1, 'a', 1.2], [2, 'b', 2.2], [3, 'c', 3.2]]
df = pd.DataFrame(data = data,
                  index = ['row_%d'%i for i in range(3)],
                  columns=['col_0', 'col_1', 'col_2'])
df

col_0col_1col_2
row_01a1.2
row_12b2.2
row_23c3.2

 但一般而言,更多的时候会采用从列索引名到数据的映射来构造数据框,同时再加上行索引:

df = pd.DataFrame(data = {'col_0': [1,2,3],
                          'col_1':list('abc'),
                          'col_2': [1.2, 2.2, 3.2]},
                  index = ['row_%d'%i for i in range(3)])
df

由于这种映射关系,在DataFrame中可以用[col_name][col_list]来取出相应的列与由多个列组成的表,结果分别为SeriesDataFrame

Series类似,在数据框中同样可以取出相应的属性:

 

三、常用基本函数

为了进行举例说明,在接下来的部分和其余章节都将会使用一份learn_pandas.csv的虚拟数据集,它记录了四所学校学生的体测个人信息。

df = pd.read_csv('../data/learn_pandas.csv')
df.columns
'''
Index(['School', 'Grade', 'Name', 'Gender', 'Height', 'Weight', 'Transfer',
,       'Test_Number', 'Test_Date', 'Time_Record'],
,      dtype='object')
'''

上述列名依次代表学校、年级、姓名、性别、身高、体重、是否为转系生、体测场次、测试时间、1000米成绩,本章只需使用其中的前七列

df = df[df.columns[:7]]

1. 汇总函数

head, tail函数分别表示返回表或者序列的前n行和后n行,其中n默认为5:

 info, describe分别返回表的信息概况和表中数值列对应的主要统计量 :

 

【NOTE】更全面的数据汇总

info, describe只能实现较少信息的展示,如果想要对一份数据集进行全面且有效的观察,特别是在列较多的情况下,推荐使用pandas-profiling包,它将在第十一章被再次提到。

2. 特征统计函数

SeriesDataFrame上定义了许多统计函数,最常见的是sum, mean, median, var, std, max, min。例如,选出身高和体重列进行演示:

df_demo = df[['Height', 'Weight']]
df_demo.mean()
'''
Height    163.218033
,Weight     55.015873
,dtype: float64
'''
df_demo.max()
'''
Height    193.9
,Weight     89.0
,dtype: float64
'''

此外,需要介绍的是quantile, count, idxmax这三个函数,它们分别返回的是分位数、非缺失值个数、最大值对应的索引:

 上面这些所有的函数,由于操作后返回的是标量,所以又称为聚合函数,它们有一个公共参数axis,默认为0代表逐列聚合,如果设置为1则表示逐行聚合:

3. 唯一值函数

对序列使用uniquenunique可以分别得到其唯一值组成的列表和唯一值的个数:

 

 如果想要观察多个列组合的唯一值,可以使用drop_duplicates。其中的关键参数是keep,默认值first表示每个组合保留第一次出现的所在行,last表示保留最后一次出现的所在行,False表示把所有重复组合所在的行剔除。 

 

 

 

 此外,duplicateddrop_duplicates的功能类似,但前者返回了是否为唯一值的布尔列表,其keep参数与后者一致。其返回的序列,把重复元素设为True,否则为False。 drop_duplicates等价于把duplicatedTrue的对应行剔除。

4. 替换函数

一般而言,替换操作是针对某一个列进行的,因此下面的例子都以Series举例。pandas中的替换函数可以归纳为三类:映射替换、逻辑替换、数值替换。其中映射替换包含replace方法、第八章中的str.replace方法以及第九章中的cat.codes方法,此处介绍replace的用法。

replace中,可以通过字典构造,或者传入两个列表来进行替换:

 另外,replace还有一种特殊的方向替换,指定method参数为ffill则为用前面一个最近的未被替换的值进行替换,bfill则使用后面最近的未被替换的值进行替换。从下面的例子可以看到,它们的结果是不同的:

【WARNING】正则替换请使用str.replace

虽然对于replace而言可以使用正则替换,但是当前版本下对于string类型的正则替换还存在bug,因此如有此需求,请选择str.replace进行替换操作,具体的方式将在第八章中讲解。

【END】

逻辑替换包括了wheremask,这两个函数是完全对称的:where函数在传入条件为False的对应行进行替换,而mask在传入条件为True的对应行进行替换,当不指定替换值时,替换为缺失值。

 需要注意的是,传入的条件只需是与被调用的Series索引一致的布尔序列即可:

5. 排序函数

排序共有两种方式,其一为值排序,其二为索引排序,对应的函数是sort_valuessort_index

为了演示排序函数,下面先利用set_index方法把年级和姓名两列作为索引,多级索引的内容和索引设置的方法将在第三章进行详细讲解。

 

对身高进行排序,默认参数ascending=True为升序:

 

 在排序中,经常遇到多列排序的问题,比如在体重相同的情况下,对身高进行排序,并且保持身高降序排列,体重升序排列:

 索引排序的用法和值排序完全一致,只不过元素的值在索引中,此时需要指定索引层的名字或者层号,用参数level表示。另外,需要注意的是字符串的排列顺序由字母顺序决定。

6. apply方法

apply方法常用于DataFrame的行迭代或者列迭代,它的axis含义与第2小节中的统计聚合函数一致,apply的参数往往是一个以序列为输入的函数。例如对于.mean(),使用apply可以如下地写出:

 同样的,可以利用lambda表达式使得书写简洁,这里的x就指代被调用的df_demo表中逐个输入的序列:

 若指定axis=1,那么每次传入函数的就是行元素组成的Series,其结果与之前的逐行均值结果一致。

 这里再举一个例子:mad函数返回的是一个序列中偏离该序列均值的绝对值大小的均值,例如序列1,3,7,10中,均值为5.25,每一个元素偏离的绝对值为4.25,2.25,1.75,4.75,这个偏离序列的均值为3.25。现在利用apply计算升高和体重的mad指标:

【WARNING】谨慎使用apply

得益于传入自定义函数的处理,apply的自由度很高,但这是以性能为代价的。一般而言,使用pandas的内置函数处理和apply来处理同一个任务,其速度会相差较多,因此只有在确实存在自定义需求的情境下才考虑使用apply

四、窗口对象

pandas中有3类窗口,分别是滑动窗口rolling、扩张窗口expanding以及指数加权窗口ewm。需要说明的是,以日期偏置为窗口大小的滑动窗口将在第十章讨论,指数加权窗口见本章练习。

1. 滑窗对象

要使用滑窗函数,就必须先要对一个序列使用.rolling得到滑窗对象,其最重要的参数为窗口大小window

在得到了滑窗对象后,能够使用相应的聚合函数进行计算,需要注意的是窗口包含当前行所在的元素,例如在第四个位置进行均值运算时,应当计算(2+3+4)/3,而不是(1+2+3)/3

 

 此外,还支持使用apply传入自定义函数,其传入值是对应窗口的Series,例如上述的均值函数可以等效表示

 shift, diff, pct_change是一组类滑窗函数,它们的公共参数为periods=n,默认为1,分别表示取向前第n个元素的值、与向前第n个元素做差(与Numpy中不同,后者表示n阶差分)、与向前第n个元素相比计算增长率。这里的n可以为负,表示反方向的类似操作。

 

 将其视作类滑窗函数的原因是,它们的功能可以用窗口大小为n+1rolling方法等价代替:

2. 扩张窗口

扩张窗口又称累计窗口,可以理解为一个动态长度的窗口,其窗口的大小就是从序列开始处到具体操作的对应位置,其使用的聚合函数会作用于这些逐步扩张的窗口上。具体地说,设序列为a1, a2, a3, a4,则其每个位置对应的窗口即[a1]、[a1, a2]、[a1, a2, a3]、[a1, a2, a3, a4]。

 第三章 索引

一、索引器

1. 表的列索引

列索引是最常见的索引形式,一般通过[]来实现。通过[列名]可以从DataFrame中取出相应的列,返回值为Series,例如从表中取出姓名一列:

 如果要取出多个列,则可以通过[列名组成的列表],其返回值为一个DataFrame,例如从表中取出性别和姓名两列:

此外,若要取出单列,且列名中不包含空格,则可以用.列名取出,这和[列名]是等价的:

2. 序列的行索引

【a】以字符串为索引的Series

如果取出单个索引的对应元素,则可以使用[item],若Series只有单个值对应,则返回这个标量值,如果有多个值对应,则返回一个Series

 如果想要取出某两个索引之间的元素,并且这两个索引是在整个索引中唯一出现,则可以使用切片,,同时需要注意这里的切片会包含两个端点:

如果前后端点的值重复出现,那么需要经过排序才能使用切片:

 

【b】以整数为索引的Series

在使用数据的读入函数时,如果不特别指定所对应的列作为索引,那么会生成从0开始的整数索引作为默认索引。当然,任意一组符合长度要求的整数都可以作为索引。

和字符串一样,如果使用[int][int_list],则可以取出对应索引元素的值:

 如果使用整数切片,则会取出对应索引位置的值,注意这里的整数切片同Python中的切片一样不包含右端点:

【WARNING】关于索引类型的说明

如果不想陷入麻烦,那么请不要把纯浮点以及任何混合类型(字符串、整数、浮点类型等的混合)作为索引,否则可能会在具体的操作时报错或者返回非预期的结果,并且在实际的数据分析中也不存在这样做的动机。

3. loc索引器

前面讲到了对DataFrame的列进行选取,下面要讨论其行的选取。对于表而言,有两种索引器,一种是基于元素loc索引器,另一种是基于位置iloc索引器。

loc索引器的一般形式是loc[*, *],其中第一个*代表行的选择,第二个*代表列的选择,如果省略第二个位置写作loc[*],这个*是指行的筛选。其中,*的位置一共有五类合法对象,分别是:单个元素、元素列表、元素切片、布尔列表以及函数,下面将依次说明。

为了演示相应操作,先利用set_index方法把Name列设为索引,关于该函数的其他用法将在多级索引一章介绍。

【a】*为单个元素

此时,直接取出相应的行或列,如果该元素在索引中重复则结果为DataFrame,否则为Series

 

【b】*为元素列表

此时,取出列表中所有元素值对应的行或列:

【c】*为切片

之前的Series使用字符串索引时提到,如果是唯一值的起点和终点字符,那么就可以使用切片,并且包含两个端点,如果不唯一则报错:

 需要注意的是,如果DataFrame使用整数索引,其使用整数切片的时候和上面字符串索引的要求一致,都是元素切片,包含端点且起点、终点不允许有重复值。

???????????

【d】*为布尔列表

在实际的数据处理中,根据条件来筛选行是极其常见的,此处传入loc的布尔列表与DataFrame长度相同,且列表为True的位置所对应的行会被选中,False则会被剔除。

例如,选出体重超过70kg的学生:

前面所提到的传入元素列表,也可以通过isin方法返回的布尔列表等价写出,例如选出所有大一和大四的同学信息:

 对于复合条件而言,可以用|(或), &(且), ~(取反)的组合来实现,例如选出复旦大学中体重超过70kg的大四学生,或者北大男生中体重超过80kg的非大四的学生:

【e】*为函数

这里的函数,必须以前面的四种合法形式之一为返回值,并且函数的输入值为DataFrame本身。假设仍然是上述复合条件筛选的例子,可以把逻辑写入一个函数中再返回,需要注意的是函数的形式参数x本质上即为df_demo

此外,还支持使用lambda表达式,其返回值也同样必须是先前提到的四种形式之一:

 由于函数无法返回如start: end: step的切片形式,故返回切片时要用slice对象进行包装:

最后需要指出的是,对于Series也可以使用loc索引,其遵循的原则与DataFrame中用于行筛选的loc[*]完全一致,此处不再赘述。

【WARNING】不要使用链式赋值

在对表或者序列赋值时,应当在使用一层索引器后直接进行赋值操作,这样做是由于进行多次索引后赋值是赋在临时返回的copy副本上的,而没有真正修改元素从而报出SettingWithCopyWarning警告。例如,下面给出的例子:

4. iloc索引器

iloc的使用与loc完全类似,只不过是针对位置进行筛选,在相应的*位置处一共也有五类合法对象,分别是:整数、整数列表、整数切片、布尔列表以及函数,函数的返回值必须是前面的四类合法对象中的一个,其输入同样也为DataFrame本身。

 

在使用布尔列表的时候要特别注意,不能传入Series而必须传入序列的values,否则会报错。因此,在使用布尔筛选的时候还是应当优先考虑loc的方式。

例如,选出体重超过80kg的学生:

Series而言同样也可以通过iloc返回相应位置的值或子序列:

5. query方法

pandas中,支持把字符串形式的查询表达式传入query方法来查询数据,其表达式的执行结果必须返回布尔列表。在进行复杂索引时,由于这种检索方式无需像普通方法一样重复使用DataFrame的名字来引用列名,一般而言会使代码长度在不降低可读性的前提下有所减少。

例如,将loc一节中的复合条件查询例子可以如下改写:

 在query表达式中,帮用户注册了所有来自DataFrame的列名,所有属于该Series的方法都可以被调用,和正常的函数调用并没有区别,例如查询体重超过均值的学生:

NOTE】query中引用带空格的列名

对于含有空格的列名,需要使用`col name`的方式进行引用。

【END】

同时,在query中还注册了若干英语的字面用法,帮助提高可读性,例如:or, and, or, is in, not in。例如,筛选出男生中不是大一大二的学生:

 此外,在字符串中出现与列表的比较时,==!=分别表示元素出现在列表和没有出现在列表,等价于is innot in,例如查询所有大三和大四的学生:

 对于query中的字符串,如果要引用外部变量,只需在变量名前加@符号。例如,取出体重位于70kg到80kg之间的学生

6. 随机抽样

如果把DataFrame的每一行看作一个样本,或把每一列看作一个特征,再把整个DataFrame看作总体,想要对样本或特征进行随机抽样就可以用sample函数。有时在拿到大型数据集后,想要对统计特征进行计算来了解数据的大致分布,但是这很费时间。同时,由于许多统计特征在等概率不放回的简单随机抽样条件下,是总体统计特征的无偏估计,比如样本均值和总体均值,那么就可以先从整张表中抽出一部分来做近似估计。

sample函数中的主要参数为n, axis, frac, replace, weights,前三个分别是指抽样数量、抽样的方向(0为行、1为列)和抽样比例(0.3则为从总体中抽出30%的样本)。

replaceweights分别是指是否放回和每个样本的抽样相对概率,当replace = True则表示有放回抽样。例如,对下面构造的df_samplevalue值的相对大小为抽样概率进行有放回抽样,抽样数量为3。

 

二、多级索引

1. 多级索引及其表的结构

为了更加清晰地说明具有多级索引的DataFrame结构,下面新构造一张表,读者可以忽略这里的构造方法,它们将会在第4小节被更详细地讲解。

np.random.seed(0)
multi_index = pd.MultiIndex.from_product([list('ABCD'), df.Gender.unique()], names=('School', 'Gender'))
multi_column = pd.MultiIndex.from_product([['Height', 'Weight'], df.Grade.unique()], names=('Indicator', 'Grade'))
df_multi = pd.DataFrame(np.c_[(np.random.randn(8,4)*5 + 163).tolist(), (np.random.randn(8,4)*5 + 65).tolist()],
                        index = multi_index, columns = multi_column).round(1)
df_multi
IndicatorHeightWeight
GradeFreshmanSeniorSophomoreJuniorFreshmanSeniorSophomoreJunior
SchoolGender
AFemale171.8165.0167.9174.260.655.163.365.8
Male172.3158.1167.8162.271.271.063.163.5
BFemale162.5165.1163.7170.359.857.956.574.8
Male166.8163.6165.2164.762.562.858.768.9
CFemale170.5162.0164.6158.756.963.960.566.9
Male150.2166.3167.3159.362.459.164.967.1
DFemale174.3155.7163.2162.165.366.561.863.2
Male170.7170.3163.8164.961.663.260.956.4

下图通过颜色区分,标记了DataFrame的结构。与单层索引的表一样,具备元素值、行索引和列索引三个部分。其中,这里的行索引和列索引都是MultiIndex类型,只不过索引中的一个元素是元组而不是单层索引中的标量。例如,行索引的第四个元素为("B", "Male"),列索引的第二个元素为("Height", "Senior"),这里需要注意,外层连续出现相同的值时,第一次之后出现的会被隐藏显示,使结果的可读性增强。

与单层索引类似,MultiIndex也具有名字属性,图中的SchoolGender分别对应了表的第一层和第二层行索引的名字,IndicatorGrade分别对应了第一层和第二层列索引的名字。

索引的名字和值属性分别可以通过namesvalues获得:

 但对于索引而言,无论是单层还是多层,用户都无法通过index_obj[0] = item的方式来修改元素,也不能通过index_name[0] = new_name的方式来修改名字,关于如何修改这些属性的话题将在第三节被讨论。

2. 多级索引中的loc索引器

熟悉了结构后,现在回到原表,将学校和年级设为索引,此时的行为多级索引,列为单级索引,由于默认状态的列索引不含名字,因此对应于刚刚图中IndicatorGrade的索引名位置是空缺的。

由于多级索引中的单个元素以元组为单位,因此之前在第一节介绍的 loc 和 iloc 方法完全可以照搬,只需把标量的位置替换成对应的元组。

当传入元组列表或单个元组或返回前二者的函数时,需要先进行索引排序以避免性能警告:

 

 

 

 

 当使用切片时需要注意,在单级索引中只要切片端点元素是唯一的,那么就可以进行切片,但在多级索引中,无论元组在索引中是否重复出现,都必须经过排序才能使用切片,否则报错:

 

 

 

 此外,在多级索引中的元组有一种特殊的用法,可以对多层的元素进行交叉组合后索引,但同时需要指定loc的列,全选则用:表示。其中,每一层需要选中的元素用列表存放,传入loc的形式为[(level_0_list, level_1_list), cols]。例如,想要得到所有北大和复旦的大二大三学生,可以如下写出:

 

下面的语句和上面类似,但仍然传入的是元素(这里为元组)的列表,它们的意义是不同的,表示的是选出北大的大三学生和复旦的大二学生:

3. IndexSlice对象

前面介绍的方法,即使在索引不重复的时候,也只能对元组整体进行切片,而不能对每层进行切片,也不允许将切片和布尔列表混合使用,引入IndexSlice对象就能解决这个问题。Slice对象一共有两种形式,第一种为loc[idx[*,*]]型,第二种为loc[idx[*,*],idx[*,*]]型,下面将进行介绍。为了方便演示,下面构造一个索引不重复的DataFrame

np.random.seed(0)
L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_ex = pd.DataFrame(np.random.randint(-9,10,(9,9)), index=mul_index1, columns=mul_index2)
df_ex

BigDEF
Smalldefdefdef
UpperLower
Aa36-9-6-6-209-5
b-33-8-3-258-44
c-107-466-99-6
Ba85-2-9-80-91-6
b29-7-9-9-5-4-3-1
c86-501-8-8-20
Ca-6-3259-95-63
b12-5-3-56-63-5
c-156-66478-4

为了使用silce对象,先要进行定义:

【a】loc[idx[*,*]]

这种情况并不能进行多层分别切片,前一个*表示行的选择,后一个*表示列的选择,与单纯的loc是类似的:

 
BigDEF
Smallfdefdef
UpperLower
Ca259-95-63
b-5-3-56-63-5
c6-66478-4

另外,也支持布尔序列的索引:

BigDF
Smalldee
UpperLower
Aa369
b-33-4
c-109

【b】loc[idx[*,*],idx[*,*]]

这种情况能够分层进行切片,前一个idx指代的是行索引,后一个是列索引。

BigEF
Smallefef
UpperLower
Ab-25-44
c669-6

但需要注意的是,此时不支持使用函数:

4. 多级索引的构造

前面提到了多级索引表的结构和切片,那么除了使用set_index之外,如何自己构造多级索引呢?常用的有from_tuples, from_arrays, from_product三种方法,它们都是pd.MultiIndex对象下的函数。

from_tuples指根据传入由元组组成的列表进行构造:

三、索引的常用方法

1. 索引层的交换和删除

为了方便理解交换的过程,这里构造一个三级索引的例子:

np.random.seed(0)
L1,L2,L3 = ['A','B'],['a','b'],['alpha','beta']
mul_index1 = pd.MultiIndex.from_product([L1,L2,L3], names=('Upper', 'Lower','Extra'))
L4,L5,L6 = ['C','D'],['c','d'],['cat','dog']
mul_index2 = pd.MultiIndex.from_product([L4,L5,L6], names=('Big', 'Small', 'Other'))
df_ex = pd.DataFrame(np.random.randint(-9,10,(8,8)), index=mul_index1,  columns=mul_index2)
df_ex
BigCD
Smallcdcd
Othercatdogcatdogcatdogcatdog
UpperLowerExtra
Aaalpha36-9-6-6-209
beta-5-33-8-3-258
balpha-44-107-466
beta-99-685-2-9-8
Baalpha0-91-629-7-9
beta-9-5-4-3-186-5
balpha01-8-8-20-6-3
beta259-95-631

 索引层的交换由swaplevelreorder_levels完成,前者只能交换两个层,而后者可以交换任意层,两者都可以指定交换的是轴是哪一个,即行索引或列索引:

 

【NOTE】轴之间的索引交换

这里只涉及行或列索引内部的交换,不同方向索引之间的交换将在第五章中被讨论。

【END】

若想要删除某一层的索引,可以使用droplevel方法:

 

2. 索引属性的修改

通过rename_axis可以对索引层的名字进行修改,常用的修改方式是传入字典的映射:

 通过rename可以对索引的值进行修改,如果是多级索引需要指定修改的层号level

 

传入参数也可以是函数,其输入值就是索引元素:

【END】

对于整个索引的元素替换,可以利用迭代器实现:

若想要对某个位置的元素进行修改,在单层索引时容易实现,即先取出索引的values属性,再给对得到的列表进行修改,最后再对index对象重新赋值。但是如果是多级索引的话就有些麻烦,一个解决的方案是先把某一层索引临时转为表的元素,然后再进行修改,最后重新设定为索引,下面一节将介绍这些操作。

另外一个需要介绍的函数是map,它是定义在Index上的方法,与前面rename方法中层的函数式用法是类似的,只不过它传入的不是层的标量值,而是直接传入索引的元组,这为用户进行跨层的修改提供了遍历。例如,可以等价地写出上面的字符串转大写的操作:

关于map的另一个使用方法是对多级索引的压缩,这在第四章和第五章的一些操作中是有用的:

同时,也可以反向地展开:

3. 索引的设置与重置

为了说明本节的函数,下面构造一个新表:

df_new = pd.DataFrame({'A':list('aacd'), 'B':list('PQRT'), 'C':[1,2,3,4]})
df_new
ABC
0aP1
1aQ2
2cR3
3dT4

 索引的设置可以使用set_index完成,这里的主要参数是append,表示是否来保留原来的索引,直接把新设定的添加到原索引的内层

 

可以同时指定多个列作为索引:

 如果想要添加索引的列没有出现在其中,那么可以直接在参数中传入相应的Series

 reset_indexset_index的逆函数,其主要参数是drop,表示是否要把去掉的索引层丢弃,而不是添加到列中:

 

如果重置了所有的索引,那么pandas会直接重新生成一个默认索引:

4. 索引的变形

在某些场合下,需要对索引做一些扩充或者剔除,更具体地要求是给定一个新的索引,把原表中相应的索引对应元素填充到新索引构成的表中。例如,下面的表中给出了员工信息,需要重新制作一张新的表,要求增加一名员工的同时去掉身高列并增加性别列:

 

这种需求常出现在时间序列索引的时间点填充以及ID编号的扩充。另外,需要注意的是原来表中的数据和新表中会根据索引自动对齐,例如原先的1002号位置在1003号之后,而新表中相反,那么reindex中会根据元素对齐,与位置无关。

还有一个与reindex功能类似的函数是reindex_like,其功能是仿照传入的表索引来进行被调用表索引的变形。例如,现在已经存在一张表具备了目标索引的条件,那么上述功能可采用下述代码得到:

四、索引运算

1. 集合的运算法则

经常会有一种利用集合运算来取出符合条件行的需求,例如有两张表AB,它们的索引都是员工编号,现在需要筛选出两表索引交集的所有员工信息,此时通过Index上的运算操作就很容易实现。

不过在此之前,不妨先复习一下常见的四种集合运算:

2. 一般的索引运算

由于集合的元素是互异的,但是索引中可能有相同的元素,先用unique去重后再进行运算。下面构造两张最为简单的示例表进行演示:

 若两张表需要做集合运算的列并没有被设置索引,一种办法是先转成索引,运算后再恢复,另一种方法是利用isin函数,例如在重置索引的第一张表中选出id列交集的所在行:

 

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值