2022年会话推荐综述

本文提供了2022年会话推荐系统的综述,阐述了会话推荐与序列推荐的区别,重点讨论了会话推荐的目的、框架、相关研究及其挑战。会话推荐旨在通过学习会话内或会话间的依赖关系来预测未知部分,而现有研究对此领域的规范化和挑战分析尚不充分。文章还概述了SBRS的方法分类,包括常规方法、潜在表示方法和深度神经网络方法,并探讨了SBRS的应用和数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


title: 2022年会话推荐综述

最近对于会话推荐有了新的兴趣

文章题目:

A Survey on Session-based Recommender Systems

0. 前言

  1. 提供了一个统一的框架来对SBRSs研究进行分类

  2. SBRS的统一问题陈述,其中SBRS建立在正式概念之上:用户、项目、动作、交互和会话我们全面概述了会话数据的独特特性以及由此带来的SBRSs挑战

  3. 会话任务方法进行了系统的分类和比较

  4. 全面了解如何应对挑战以及SBRS领域取得了哪些进展简要介绍了SBRSs的每一类方法以及关键技术细节

  5. 讨论了SBRS研究中存在的问题和前景

1. 序列推荐和会话推荐的区别

作者对于Boundary解释

是指在事务事件中启动和结束特定会话的开始-结束交互对

会话 可以分为 有序会话 和 无序对话

这个session 内 交互 内item 是不是按顺序分布的来区分是否为 无序有序

对于边界间隔 session 有很多个 而 序列 只有单一一个

对于 其 嵌入的主要关系

基于 会话的 是 共现关系 而 基于 序列的 是 顺序依赖关系

2. 会话推荐

2.1 目的

会话推荐需要注意attention

  1. SBRS旨在通过学习会话内或会话间的依赖关系,预测给定已知部分的会话的未知部分(例如,一个项目或一批项目),或给定历史会话的未来会话(例如,下一个篮子)。
  2. 原则上,SBRS不一定依赖会话内的顺序信息,但对于有序会话,可以利用自然存在的顺序依赖性进行建议。

2.2 框架

主要工作分为三个子领域

其子领域 可以分为

  1. 下一次交互推荐
  2. 下一次部分会话推荐(即 下一个会话出现了一部分 预测剩余的部分)
  3. 下一次会话推荐

Point-Of-Interest (POI) 生词

其实 在框架体现中 可以看出 下一个项目的推荐是 最多的还是一个交互的推荐

2.3 相关的研究

作者认为现有的研究没有发现任何系统地将这一研究领域正规化的研究,或全面分析会话数据的独特特征和SBRS所面临的关键挑战。更不用说提供一个深入的的总结,或详细说明该领域存在的公开研究问题。

对于 相关的研究 习惯将 RS 和 SBRS 混为一谈 且 特别针对 SBRS 的研究特别少。工作主要集中在序列感知RSs上,只讨论了一小部分基于有序会话数据的SBRS工作,而忽略了基于无序会话的SBRS。

2.4 会话推荐的主要符号

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值