出去流浪了一段时间,现在我又回来了,内容继续更新,算法继续学习。
在最近看的是红黑树,而且在这里停留了很久,因为总是遇到NullPointerException的问题,每天都在对程序进行调试,今天终于搞定了。这里先插入出现NullPointerException的情形:
这里简单介绍一下什么是红黑树:
红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
性质1. 节点是红色或黑色。
性质2. 根节点是黑色。
性质3 每个叶节点是黑色的。
性质4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
上面就是红黑树的定义,可以看出红黑树是二叉查找树的扩充,所以其大多数的操作都和二叉查找树相识,只不过还需要考虑红黑树以上的5个基本性质,所以就会在二叉查找树的基础上进行一些改进和补充。下面就是具体代码:
- /*
- * 红黑树的java实现
- * @version 1.0 2012/4/25
- * @author akon
- */
- package com.akon405.www;
- public class RBTree {
- RBTreeNode nullNode=new RBTreeNode();//定义空节点
- RBTreeNode RBTreeRoot=nullNode;//定义一个根节点
- //初始化空节点nullNode
- public void init(){
- nullNode.data=0;
- nullNode.color=null;
- nullNode.left=nullNode;
- nullNode.right=nullNode;
- nullNode.parent=nullNode;
- }
- //中序遍历红黑树操作(中序遍历之后便可以排序成功)
- public void inOrderRBTree(RBTreeNode x){
- if(x!=nullNode){
- inOrderRBTree(x.left);//先遍历左子树
- System.out.print(x.data+",");//打印中间节点
- inOrderRBTree(x.right);//最后遍历右子树
- }
- }
- //红黑树的插入操作
- public void insert(RBTree T,RBTreeNode k){
- RBTreeNode x=T.RBTreeRoot;
- RBTreeNode y=nullNode;
- RBTreeNode node=new RBTreeNode();
- node=k;
- while(x!=nullNode){//while语句可以找到k节点所要插入的位置的父亲节点y
- y=x;
- if(x.data>node.data){
- x=x.left;
- }else{
- x=x.right;
- }
- }
- node.parent=y;
- if(y==nullNode){//二叉查找树为空树的情况下,直接插入到根节点,这里的y为已知的k的父亲节点
- T.RBTreeRoot=node;
- }else if(node.data<y.data){//插入到父亲节点y的左边
- y.left=node;
- }else{//插入到父亲节点y的右边
- y.right=node;
- }
- node.left=nullNode;//叶节点的子树须为null
- node.right=nullNode;
- node.color="red";//red代表红色(插入红色的结点,因为这样可以在插入过程中尽量避免对树的调整)
- insertFixup(node);//为了保证插入节点之后依然满足红黑树的性质,这里创建一个修复函数对红黑树的节点重新着色并旋转
- }
- //插入修复函数(颜色的调整,左旋,右旋)
- private void insertFixup(RBTreeNode k) {
- RBTreeNode y=nullNode;
- while(k.parent.color=="red"){//插入节点k的父亲节点为红色的情况下(因为插入的节点是红色节点,所以它的父亲节点必须为黑色)
- if(k.parent==k.parent.parent.left){//(1)k父亲节点为其父亲节点的左孩子
- y=k.parent.parent.right;//y的k的叔父节点
- if(y.color=="red"){//case 1(k的叔父节点为红色)
- k.parent.color="black";//k的父亲节点置为黑
- y.color="black";
- k.parent.parent.color="red";
- k=k.parent.parent;
- }else{//case 2(k的叔父节点为黑色)
- if(k==k.parent.right){//k为右孩子节点
- k=k.parent;
- leftRotate(k);
- }
- k.parent.color="black";
- k.parent.parent.color="red";
- rightRotate(k);
- }
- }else{//(2)k父亲节点为其父亲节点的右孩子,操作和前面(1)k父亲节点为其父亲节点的左孩子一样
- y=k.parent.parent.left;
- if(y.color=="red"){//case 1
- k.parent.color="black";
- y.color="black";
- k.parent.parent.color="red";
- k=k.parent.parent;
- }else{//case 2
- if(k==k.parent.right){
- k=k.parent;
- rightRotate(k);
- }
- k.parent.color="black";
- k.parent.parent.color="red";
- leftRotate(k);
- }
- }
- }
- RBTreeRoot.color="black";
- }
- //红黑树的删除操作
- public void delete(RBTreeNode x){//三种情况的节点
- RBTreeNode y;//y为真实删除的节点(x不一定是真实被删除的节点)
- //下面的if..else便可确定节点y(y为x节点或者为x的后继节点)
- if(x.left==nullNode||x.right==nullNode){
- y=x;
- }else{
- y=successor(x);
- }
- //把x置为y的非空孩子节点
- if(y.left!=nullNode){
- x=y.left;
- }else{
- x=y.right;
- }
- //删除y节点
- x.parent=y.parent;
- if(y.parent==nullNode){
- RBTreeRoot=x;
- }else if(y==y.parent.left){
- y.parent.left=x;
- }else{
- y.parent.left=x;
- }
- if(y!=x){
- x.data=y.data;
- }
- if(y.color=="black"){//修复红黑树(删除节点为红色的时候不影响红黑树的性质)
- deleteFixup(x);
- }
- }
- //删除修复函数
- public void deleteFixup(RBTreeNode x){
- RBTreeNode y;
- while(x!=RBTreeRoot&&x.color=="black"){
- if(x==x.parent.left){//x为其父亲节点的左孩子节点
- y=x.parent.right;//x的兄弟节点y
- if(y.color=="red"){//x的兄弟节点y为红色
- //第一种情况--x的兄弟节点y为红色
- y.color="black";
- y.parent.color="red";
- rightRotate(x.parent);
- y=x.parent.right;
- }else{//x的兄弟节点y为黑色
- if(y.left.color=="black"&&y.right.color=="black"){//第二种情况--x的兄弟节点y为黑色,y的孩子节点均为黑色
- y.color="red";
- x=x.parent;
- }else if(y.right.color=="black"&&y.left.color=="red"){//第三种情况--x的兄弟节点y为黑色,y的右孩子节点是黑色,左孩子是红色
- y.left.color="red";
- y.color="black";
- leftRotate(x);
- y=x.parent.right;
- }else if(y.right.color=="red"){//第四种情况--x的兄弟节点y为黑色,y的右孩子节点为红色
- y.color=x.parent.color;
- x.parent.color="black";
- y.right.color="black";
- leftRotate(x);
- x=RBTreeRoot;
- }
- }
- }else{//同样,原理一致,只是遇到左旋改为右旋,遇到右旋改为左旋,即可。其它代码不变。
- y=x.parent.left;//x的兄弟节点
- if(y.color=="red"){
- y.color="black";
- y.parent.color="red";
- rightRotate(x.parent);
- y=x.parent.right;
- }else{
- if(y.left.color=="black"&&y.right.color=="black"){
- y.color="red";
- x=x.parent;
- }else if(y.right.color=="black"&&y.left.color=="red"){
- y.left.color="red";
- y.color="black";
- leftRotate(x);
- y=x.parent.right;
- }else if(y.right.color=="red"){
- y.color=x.parent.color;
- x.parent.color="black";
- y.right.color="black";
- rightRotate(x);
- x=RBTreeRoot;
- }
- }
- }
- }
- x.color="black";
- }
- //查找节点的后继节点
- public RBTreeNode successor(RBTreeNode x){
- if(x.right!=nullNode){
- return searchMinNode(x.right);//右子树的最小值
- }
- RBTreeNode y=x.parent;
- while(y!=nullNode&&x==y.right){//向上找到最近的一个节点,其父亲节点的左子树包涵了当前节点或者其父亲节点为空
- x=y;
- y=y.parent;
- }
- return y;
- }
- //查找最小节点
- public RBTreeNode searchMinNode(RBTreeNode x){
- while(x.left!=nullNode){
- x=x.left;
- }
- return x;
- }
- //从r节点开始查找x节点
- public RBTreeNode search(RBTreeNode r,RBTreeNode x){
- if(r==nullNode||r.data==x.data){
- return r;
- }
- if(x.data<r.data){
- return search(r.left,x);
- }else{
- return search(r.right,x);
- }
- }
- //红黑树的左旋操作(选择的节点必须右孩子节点不为空)
- public void leftRotate(RBTreeNode x){
- //左旋分为三个步骤,每个步骤有两个操作,因为每个节点既有孩子节点又有父亲节点
- RBTreeNode y=x.right;//把x节点的右孩子节点赋给我们定义的y节点
- //第一步,y的左孩子节点转变为x的右孩子节点
- x.right=y.left;
- y.right.parent=x;
- //第二步,把x的父亲节点转变为y的父亲节点
- y.parent=x.parent;
- if(x.parent==nullNode){//x为根节点的情况下
- RBTreeRoot=y;
- }else if(x==x.parent.left){//x的父亲节点不为空并且x为其父亲节点的左孩子节点
- x.parent.left=y;
- }else{//x的父亲节点不为空并且x为其父亲节点的右孩子节点
- x.parent.right=y;
- }
- //第三步,把x节点转变为y的左孩子节点
- y.left=x;
- x.parent=y;
- //左旋完成
- }
- //红黑树的右旋操作(选择的节点必须左孩子节点不为空)
- public void rightRotate(RBTreeNode x){
- //右旋和左旋步骤基本一样,也分为三个步骤
- RBTreeNode y=x.left;
- //第一步,把y的右孩子节点转变为x的左孩子节点
- x.left=y.right;
- y.left.parent=x;
- //第二步,把x的父亲节点转变为y的父亲节点
- y.parent=x.parent;
- if(x.parent==nullNode){
- RBTreeRoot=y;
- }else if(x.parent.left==x){
- x.parent.left=y;
- }else{
- x.parent.right=y;
- }
- //第三步,把x节点转变为y的左孩子节点
- y.left=x;
- x.parent=y;
- //右旋完成
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- // TODO Auto-generated method stub
- int[] A={20,8,16,34,73,17,32,89};
- RBTree rb=new RBTree();
- rb.init();
- //通过循环插入构造红黑树
- for(int i=0;i<A.length;i++){
- RBTreeNode x=new RBTreeNode();
- x.data=A[i];
- x.color=null;
- x.left=rb.nullNode;
- x.right=rb.nullNode;
- x.parent=rb.nullNode;
- rb.insert(rb,x);
- }
- rb.inOrderRBTree(rb.RBTreeRoot);//中序遍历红黑树
- }
- }
- //红黑树的节点类
- class RBTreeNode{
- int data;
- String color;
- RBTreeNode left;
- RBTreeNode right;
- RBTreeNode parent;
- }
- 结果:17,32,34,73,89,