一、KANO模型简介
KANO模型是一种用于对用户需求进行分类和优先级排序的分析工具,由日本学者狩野纪昭(Noriaki Kano)提出。它将用户需求分为以下几类:
1. 基本型需求(Must-be Quality):
- 也被称为必备型需求,是用户认为产品必须具备的功能或特性。如果产品缺少这些功能,用户会极度不满;然而,当这些功能被满足时,用户也不会因此而特别满意,因为他们觉得这是产品理所应当具备的。例如,手机的基本通话功能、汽车的正常行驶功能等都属于基本型需求。
2. 期望型需求(One-dimensional Quality):
- 这类需求与用户的满意度呈线性关系。产品提供的功能越符合用户期望,用户满意度越高;反之,若产品提供的功能达不到用户期望,用户满意度就会降低。比如,手机的拍照功能,像素越高、成像效果越好,用户越满意;若拍照质量差,用户就会不满意。
3. 兴奋型需求(Attractive Quality):
- 又称为魅力型需求,是用户意想不到的惊喜功能。当产品提供这类功能时,会极大地提高用户满意度和忠诚度;但如果产品没有这些功能,用户也不会因此感到不满,因为他们原本就没期望产品会有这些功能。例如,某些汽车品牌提供的自动驾驶辅助功能,对普通用户来说就是兴奋型需求。
4. 无差异型需求(Indifferent Quality):
- 无论产品是否提供这些功能,用户的满意度都不会受到影响。这类需求可能是用户很少关注或者对用户没有实际价值的功能。比如,一些软件的小众插件功能,大多数用户可能永远不会使用。
5. 反向型需求(Reverse Quality):
- 这类需求与用户的期望相反,产品提供这些功能反而会导致用户满意度下降。例如,某些软件频繁推送用户不感兴趣的广告,或者汽车上一些复杂且不实用的按钮设计。
通过对用户需求进行这样的分类,可以更好地了解用户的期望,从而有针对性地进行产品设计、开发以及确定需求的优先级。
二、代码样例
以下是一个使用Python实现的简单示例,用于通过KANO问卷调查数据来对用户需求进行分类。
假设我们已经通过问卷收集到了用户对于某个产品的一些需求的反馈数据,数据格式如下:
# 假设问卷数据存储在一个字典中,键是需求描述,值是一个包含两个元素的元组,
# 分别表示用户对'有该功能'和'没有该功能'的感受评分(这里简单用数字1-5表示,1表示很不满意,5表示很满意)
questionnaire_data = {
"快速充电功能": (4, 1),
"高清屏幕显示功能": (3, 2),
"语音助手功能": (5, 2),
"个性化主题切换功能": (2, 3),
"多语言支持功能": (3, 3),
"广告推送功能": (1, 4)
}
下面是对这些数据进行KANO分类的代码:
def kano_classification(data):
kano_categories = {}
for demand, scores in data.items():
if scores[0] == 5 and scores[1] == 1:
kano_categories[demand] = "基本型需求"
elif scores[0] > scores[1]:
kano_categories[demand] = "期望型需求"
elif scores[0] == 1 and scores[1] == 5:
kano_categories[demand] = "反向型需求"
elif scores[0] < scores[1]:
kano_categories[demand] = "兴奋型需求"
else:
kano_categories[demand] = "无差异型需求"
return kano_categories
# 调用函数进行分类
classified_demands = kano_classification(questionnaire_data)
# 输出分类结果
for demand, category in classified_demands.items():
print(f"{demand}: {category}")
在上述代码中:
kano_classification
函数接受一个包含问卷数据的字典作为参数。字典的键是需求描述,值是一个包含两个元素的元组,表示用户对“有该功能”和“没有该功能”的感受评分。- 函数内部通过对每个需求的评分进行比较,根据KANO模型的分类规则,将需求划分到相应的类别中,并返回一个新的字典,其中键是需求描述,值是需求所属的KANO类别。
- 最后,调用函数并输出每个需求的分类结果。
请注意,这只是一个非常简单的示例,实际应用中,问卷数据的收集和处理可能会更加复杂,可能需要使用更专业的调查工具来收集数据,并且在分类时可能需要考虑更多的因素和更精细的规则来确保分类的准确性。