链接: link.
ABSTRACT
开发了两个可扩展的表示学习模型,即metapath2vec和metapath2vec ++,保留异构网络的结构和语义相关性。
- Metapath2Vec通过在异质信息网络中做基于元路径的随机游走来抽取节点结构信息,并利用skip-gram 算法来学习节点表示。
- Metapath2Vec++ 通过将不同类型的节点映射到不同的向量空间,进一步刻画节点间的区别。进一步支持异构网络中结构和语义相关的同步建模。
INRTODUCTION
基于word2vec的网络表示学习框架,例如DeepWalk,LINE和node2vec。这些表示学习方法不是手工编写网络特征设计,而是从“原始网络”中自动发现有用且有意义(潜在)的特征。
与传统的基于元路径的方法相比,潜在空间表示学习的优势在于它能够在没有连接元路径的情况下对节点之间的相似性进行建模。
异构网络表示学习问题目标是同时学习多种类型节点的低维和潜在嵌入。
metapath2vec的目标是最大化保留给定异构网络的结构和语义的可能性。在metapath2vec中,首先提出基于元路径的异构网络中的随机游走,以生成具有针对各种类型节点网络语义的异构邻域。其次,我们扩展了skip-gram模型,以便于对地理上和语义上相近的节点进行建模。最后,我们开发了一种基于异构负采样的方法,称

Metapath2Vec和Metapath2Vec++是为异构网络设计的两种可扩展的表示学习模型,旨在保留网络的结构和语义相关性。Metapath2Vec通过基于元路径的随机游走和skip-gram模型学习节点表示,而Metapath2Vec++通过异构负采样进一步区分节点类型。实验表明,这些模型在多类节点分类、节点聚类、相似性搜索等任务上表现出色。
最低0.47元/天 解锁文章
785

被折叠的 条评论
为什么被折叠?



