Kubernetes容器平台下的 GPU 集群算力管控

本文介绍了NVIDIA在Kubernetes容器平台上的GPU虚拟化、调度技术和安全性,探讨了如何通过结合CUDA和K8S的弹性伸缩能力,构建高效的GPU算力调度平台,以应对大模型训练和推理中的资源需求。AML平台则提供了全面集成的vGPU解决方案,优化了GPU资源管理和性能表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

随着最近一两年生成式大模型的迭代出新,尤其是以 ChartGPT 为代表的大语言模型,几乎一夜间让所有人都看到了人工智能改变世界的潜力。而作为持续发力 GPU 通用计算(CUDA)的 AI 专业显卡提供商,Nvidia 公司成为了当之无愧的技术赢家,从其屡创新高的市值中就可见一瞥。

Kubernetes(简称K8S)作为一种容器编排平台,具有许多独特的优势,尤其是其弹性伸缩的能力,可以实现底层资源的超高利用率。纵观当下的科技产业界,到处是大模型推理、微调训练的需求与 Nvidia 专业显卡一卡难求的矛盾局面。在这种矛盾背景下,将 NVIDIA 显卡与 K8S 容器平台结合起来,组成一个高效的 GPU 算力调度平台,无疑是解决这一难题的最佳技术方案。这种结合将充分发挥每块显卡的算力,并通过 Kubernetes 的弹性伸缩特性,实现对 GPU 算力的灵活调度和管理,为大规模 AI 模型的训练和推理提供了可靠的基础支持。

本文将重点介绍 Nvidia GPU 在 K8S 容器平台上的包括虚拟化、调度和安全性在内的算力管控相关技术。

名词解释

CUDA

CUDA(Compute Unified Device Architecture)是 NVIDIA 公司推出的并行计算平台和编程模型。它允许开发人员利用 NVIDIA GPU 的并行计算能力来加速应用程序的执行。CUDA 包含了一系列的编程接口和工具,使得开发者可以通过使用标准的 C/C++ 编程语言来编写 GPU 加速的程序。

RootFS

根文件系统(Root Filesystem),是 Linux 系统启动后所加载的文件系统,也是文件系统的最顶层。它包含了操作系统中的核心文件和目录结构,包括 /bin、/sbin、/etc、/lib、/dev、/proc、/sys 等

Volta、Pascal、Kepler 等

不同的 nvidia GPU 架构名称。完整定义如下:

图片

基于 K8S 的 GPU 虚拟化框架

GPU 虚拟化,除了 GPU 厂商能够在硬件和驱动层面对各种资源进行划分进而形成隔离的虚拟化方案之外,其他主流方案本质上都是对 CUDA 调用的劫持与管控,这里包括阿里的 cGPU、百度的 qGPU、火山引擎的 mGPU 和灵雀云的 vGPU 方案等。考虑到厂商对于硬件的把控和深入理解,即使出自厂商的 “软” 虚拟化方案,也可以通过硬件配合从而获得更好的效果。下文会重点介绍 Nvidia 公司的虚拟化方案以及基于 Nvidia 方案增强的灵雀云 vGPU 方案。

容器侧:CUDA 工具集

在 K8S 容器平台下,一个典型的 GPU 应用软件栈如下图所示。其中,最上层的是多个包含了业务应用在内的容器。每个容器都分别包含了业务应用、CUDA 工具集(CUDA Toolkit)和容器 RootFS;中间层是容器引擎(docker)和安装了 CUDA 驱动程序的宿主机操作系统;最底层是部署了多个 GPU 硬件显卡的服务器硬件。

图片

图示:基于 Nvidia 的 GPU 应用软件栈

主要组件

CUDA 工具集包含了 nvidia-container-runtime(shim)、nvidia-container-runtime-hook 和 nvidia-container library、CLI 工具。对比 CUDA 工具集嵌入前后架构图的差异,我们可以很清楚地看到 CUDA 工具集中的组件嵌入位置,甚至推断出其作用。

图片

图示:CUDA toolset 嵌入前的容器软件栈

图片

图示:CUDA toolkit 嵌入后的容器软件栈

  • nvidia-container-runtime(shim):

该组件曾经是 runc 的一个完整分支,其中注入了特定于 NVIDIA 的代码。自2019年以来,它已经成为安装在主机系统上的本机 runC 的一个轻量级包装器。nvidia-container-runtime 接受 runc spec作为输入,将 NVIDIA 容器运行时钩子(nvidia-container-runtime-hook)作为预启动钩子注入其中,然后调用本机 runc,并传递修改后的具有该钩子设置的 runc spec。对于 NVIDIA 容器运行时 v1.12.0 版本及更高版本,这个运行时(runtime)还对 OCI 运行时规范进行了额外修改,以注入特定的设备和挂载点,这些设备和挂载点不受 NVIDIA 容器 CLI 控制。

  • nvidia-con

<think>好的,用户想了解云边端一体化架构的概念、设计或实现方式。首先,我需要回顾之前提供的引用内容,尤其是引用[1]和[2],里面提到了医疗混合云基础架构和深信服的桌面云方案,以及一个云边端分布式一体化计架构的智慧物流系统。用户可能对架构的组成部分、设计原则和具体实现方法感兴趣。 首先,我得明确云边端一体化架构的基本概念。云边端通常指的是云计、边缘计和终端设备的协同工作。这个概念的核心在于将计资源分布在云端、边缘节点和终端设备上,以提高响应速度、减少延迟,并优化资源使用。 接下来,设计方面需要考虑分层架构、协同机制、统一管理和弹性扩展。分层架构通常分为云中心、边缘层和终端层。协同机制可能涉及数据分流、任务调度和智能协同。统一管理需要跨平台的支持和自动化运维,而弹性扩展则要确保架构能灵活应对负载变化。 实现方式方面,引用中提到的深信服桌面云采用了融合架构,利用英特尔® 超能云终端TCI的优势,这可能涉及到虚拟化技术和边缘节点的管理。智慧物流系统提到的统一调度和监控,以及支持多种终端和法,这需要中间件和分布式计框架的支持,比如Kubernetes或Apache Flink。 此外,用户提供的引用里提到了多种应用场景,如医疗、物流园区、学校等,说明架构需要具备行业适配性。可能还需要考虑安全性、数据隐私和网络稳定性,这些在医疗和安防系统中尤为重要。 用户可能还想知道具体的案例,比如深信服的医疗方案如何实现终端统一管理,或者智慧物流系统如何处理多路视频分析。需要结合引用中的例子,说明不同组件如何协作,比如边缘节点处理实时数据,云端进行大数据分析。 最后,生成相关问题时,要围绕架构的设计挑战、技术选型、应用场景和优化方法展开,确保问题能引导用户深入理解该架构的不同方面。</think>### 云边端一体化架构详解 #### 一、核心概念 云边端一体化架构通过分布式计资源协同实现“云中心-边缘节点-终端设备”的三层联动: 1. **云中心**:集中式池,负责全局调度、大数据分析及长期存储,例如医疗混合云中的VDC统一管理中心[^1] 2. **边缘层**:靠近数据源的中间层(如物流园区的AIBOX-Server),提供低延迟计和本地化决策,支持灭火器识别等实时AI计[^2] 3. **终端层**:数据采集与轻量计单元(如医疗机构的桌面云终端),具备设备管理、协议适配等能 #### 二、关键设计原则 1. **分层自治架构** $$ \begin{cases} \text{云端} & \rightarrow \text{全局优化} \\ \text{边缘} & \rightarrow \text{区域自治} \\ \text{终端} & \rightarrow \text{实时响应} \end{cases} $$ 2. **协同计机制** - 数据分流:终端原始数据$\rightarrow$边缘预处理$\rightarrow$云深度分析 - 任务调度:云端下发模型$\rightarrow$边缘部署$\rightarrow$终端执行 3. **统一管控体系** 支持跨平台设备管理(x86/ARM)、多协议接入(RTSP/GB28181)、异构资源调度 #### 三、典型实现方案 ```python # 以智慧物流系统为例的伪代码框架 class CloudLayer: def model_training(data): # 使用云端GPU集群训练法模型 return optimized_model class EdgeNode: def inference(camera_stream): # 加载云下发的模型进行实时分析 if detect_anomaly(): trigger_alarm() # 调用多级告警接口[^2] class TerminalDevice: def data_collection(): # 采集传感器数据并压缩传输 return encoded_data ``` #### 四、核心技术组件 1. **边缘计框架** - 容器化部署:Kubernetes边缘集群管理 - 轻量化推理:TensorRT/TVM模型优化 2. **协同通信协议** - 数据通道:MQTT/CoAP协议 - 控制通道:gRPC远程调用 3. **统一管理平台** - 设备画像:终端类型、、网络状态 - 资源画像:$\sum_{i=1}^n (边缘节点 \times 负载率)$ #### 五、行业实践案例 1. **医疗场景** - 终端:桌面云设备统一管理(打印机/外设管控)[^1] - 边缘:PACS影像本地缓存与分析 - 云端:电子病历大数据分析 2. **智慧物流** - 终端:摄像头/传感器网络 - 边缘:AIBOX实时分析视频流(车牌识别/火灾预警)[^2] - 云端:全国物流网络优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值