引言:
LLM Agent 已经成为大语言模型中最有价值的探索方向,也更趋于最前沿的通用人工智能。构建企业自己的 LLM Agent 有助于企业在最前沿的人工智能领域探索具有完全自主性的智能化能力,包括基于企业知识库、企业工具 API(如:会议、审核、报表等)实现完全智能化的操作能力的探索。
灵雀云在 Alauda MLOps(AML)的升级版本中将 Agent 作为 Prompt 工程的重要子功能加入。AI Agent 通过结合手动 Chain 和基于 LLM 的自动 Chain 生成,同时,Agent 集成了知识库、日志和搜索等本地工具,可以快速构建企业自己的 AI Agent,探索 Agent 带来的完全智能自动化流程的能力。
那么,什么是LLM Agent?附上一篇内容详解,带您全面了解它。
具现化AI环境及应用(Embodied environments)提出了一项挑战,需要逻辑推理来解决复杂的顺序决策任务。为了克服这些障碍,一种常见的策略是采用强化学习(RL),其中代理(Agent)可以从现实世界的经验中学习。尽管深度强化学习技术取得了重大发展,但高效、安全地解决这些困难任务的复杂性仍然很具有挑战性。
与此同时,大语言模型(LLM)的最新进展带来了一些希望。某些著名论文(Radford et al. (2019), ChatGPT 3 [Brown et al.2020], and Wei et al. (2022) )声称LLM具有推理能力,其背后的研究也证明了这一点。这使LLM成为解决某些复杂的序列决策问题的潜在竞争者。
虽然存在某些将预训练的LLM纳入实体代理的研究,但研究仍需进一步深入。同时,由于现实世界问题的不确定性,根据LLM预测采取行动可能存在风险。
什么是LLM 代理?
LLM 代理是一种超越简单文本生成的人工智能系统。它使用LLM作为其中央计算引擎,使其能够进行对话、执行任务、推理并实现一定程度的自主权。
精心设计的提示对身份、指令、授权和上下文进行编码,指导 LLM 代理的回复和行为。
LLM 代理的组成部分
下图展示了LLM 代理的组成部分:
1. 作为核心的 LLM
LLM 代理的基础核心是其构建的大型语言模型。该模型使用大量数据集进行训练,可以生成并理解简单的文本。LLM的规模和设计决定了LLM 代理的初始能力和局限性。