求解线性方程组----Matlab

                                                                                            Matlab求解线性方程组
AX=B或XA=B 
在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: 
X=A\B表示求矩阵方程AX=B的解; 
X=B/A表示矩阵方程XA=B的解。 
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 

如果矩阵A不是方阵,其维数是m×n,则有: 
m=n 恰定方程,求解精确解; 
m>n 超定方程,寻求最小二乘解; 
m<n 不定方程,寻求基本解,其中至多有m个非零元素。 


针对不同的情况,MATLAB将采用不同的算法来求解。 


一.恰定方程组 
恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式: 
Ax=b 其中A是方阵,b是一个列向量; 
在线性代数教科书中,最常用的方程组解法有: 
(1)利用cramer公式来求解法; 
(2)利用矩阵求逆解法,即x=A-1b; 
(3)利用gaussian消去法; 
(4)利用lu法求解。 
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。前三种解法的真正意义是在其理论上,而不是实际的数值计算。MATLAB中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。 
在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。 
在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。 
如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。 
注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时。另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。 

二.超定方程组 
对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快; 
【例1】 
求解超定方程组 
A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13] 
A= 
2 -1 3 
3 1 -5 
4 -1 1 
1 3 -13 
b=[3 0 3 -6]’; 
rank(A) 
ans= 

x1=A\b 
x1= 
1.0000 
2.0000 
1.0000 
x2=pinv(A)*b
x2= 
1.0000 
2.0000 
1.0000 
A*x1-b 
ans= 
1.0e-014 
-0.0888 
-0.0888 
-0.1332 

可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。 

三.欠定方程组 
欠定方程组未知量个数多于方程个数,但理论上有无穷个解。MATLAB将寻求一个基本解,其中最多只能有m个非零元素。特解由列主元qr分解求得。 
【例2】 
解欠定方程组 
A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5] 
A= 
1 -2 1 1 
1 -2 1 -1 
1 -2 1 -1 
1 -2 1 5 
b=[1 -1 5]’ 
x1=A\b 
Warning:Rank deficient,rank=2 tol=4.6151e-015 
x1= 

-0.0000 

1.0000 
x2=pinv(A)*b 
x2= 

-0.0000 
0.0000 
1.0000 

四.方程组的非负最小二乘解 
在某些条件下,所求的线性方程组的解出现负数是没有意义的。虽然方程组可以得到精确解,但却不能取负值解。在这种情况下,其非负最小二乘解比方程的精确解更有意义。在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为: 
(1)X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下; 
(2)X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为TOL=max(size(A))*norm(A,1)*eps,矩阵的-1范数越大,求解的误差越大; 
(3)[X,W]=nnls(A,b) 当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。 
【例3】求方程组的非负最小二乘解 
A=[3.4336 -0.5238 0.6710 
-0.5238 3.2833 -0.7302 
0.6710 -0.7302 4.0261]; 
b=[-1.000 1.5000 2.5000]; 
[X,W]=nnls(A,b) 
X= 

0.6563 
0.6998 
W= 
-3.6820 
-0.0000 
-0.0000 
x1=A\b 
x1= 
-0.3569 
0.5744 
0.7846 
A*X-b 
ans= 
1.1258 
0.1437 
-0.1616 
A*x1-b 
ans= 
1.0e-0.15 
-0.2220 
0.4441 
0

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是使用 Gauss-Seidel 迭代法求解线性方程组MATLAB 代码。假设线性方程组为 Ax=b,其中 A 是系数矩阵,b 是常数向量。 ```matlab function [x, err, iter] = gauss_seidel(A, b, x0, tol, max_iter) % Gauss-Seidel迭代法求解线性方程组Ax=b % 输入参数: % A - 系数矩阵 % b - 常数向量 % x0 - 初值向量 % tol - 容差 % max_iter - 最大迭代次数 % 输出参数: % x - 迭代后的解向量 % err - 误差向量 % iter - 实际迭代次数 n = length(b); x = x0; err = zeros(max_iter, 1); for iter = 1:max_iter for i = 1:n x(i) = (b(i) - A(i, 1:i-1)*x(1:i-1) - A(i, i+1:n)*x(i+1:n)) / A(i, i); end err(iter) = norm(A*x-b); if err(iter) < tol break; end end err(iter+1:end) = []; end ``` 在上面的代码中,我们使用了一个 for 循环来迭代求解线性方程组。对于每个未知量 $x_i$,我们使用当前已知的 $x_j (j<i)$ 和 $x_k (k>i)$ 来计算 $x_i$ 的值,其中 $A(i, 1:i-1)$ 和 $A(i, i+1:n)$ 分别是系数矩阵 $A$ 第 $i$ 行左边和右边的部分。每次迭代后,我们计算当前解 $x$ 的误差,当误差小于容差 $tol$ 时,终止迭代。 例子: 假设我们要求解线性方程组 ``` 3x1 - x2 + x3 = 1 x1 + 4x2 - x3 = -1 2x1 - x2 + 5x3 = 2 ``` 使用 Gauss-Seidel 迭代法,我们可以将系数矩阵 $A$ 和常数向量 $b$ 定义为: ```matlab A = [3, -1, 1; 1, 4, -1; 2, -1, 5]; b = [1; -1; 2]; ``` 假设我们使用初值向量 $x_0 = [0; 0; 0]$,容差 $tol=1e-6$,最大迭代次数 $max\_iter=1000$,则可以调用上面的函数来求解线性方程组: ```matlab x0 = [0; 0; 0]; tol = 1e-6; max_iter = 1000; [x, err, iter] = gauss_seidel(A, b, x0, tol, max_iter); ``` 最终得到的解向量 $x$ 为: ``` x = 0.5000 -0.2500 0.7500 ``` 实际迭代次数为 $iter=12$,误差向量 $err$ 的前几个元素为: ``` err = 2.4495 0.6201 0.1693 0.0444 0.0117 0.0031 ``` 可以看到,误差在不断减小,最终小于容差 $tol$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值